

PROJECT NO.:
24042
PROJECT TITLE:
ClearVista Aluminium Post System AP54
CLIENT:
FMI Building Innovation
SITE ADRESS:
Multiple Cites
Multiple Sites
DATE:
19-Feb-25

CONTENTS:

- Producer Statement 1 Design
- -structural calculations
- -appendix A test report
- -appendix B concrete anchor design

PRODUCER STATEMENT-PS1 DESIGN

Building Code Clause(s):	B1, F2, F4	Job number: 24042					
ISSUED BY: (Engineering Design Firm)	ExtraMile Consulting	ExtraMile Consulting					
TO: (Client)	FMI Building Innovation	MI Building Innovation					
TO BE SUPPLIED TO: (Building Consent Authority)	Relevant Territorial Building Consent Authority						
IN RESPECT OF: (Description of building work))	Proprietary Balustrade System						
AT: (Address)	Various sites within occupancy and wind limits as stated on drawings						
LEGAL DESCRIPTION	Varies						

We have been engaged by FMI Building Innovation to provide:

Proprietary Balustrade System

in respect of the requirements of the Clause(s) of the Building Code specified above for part only, as specified in the attached Schedule, of the proposed building work.

In this document SED means "Specific Engineering Design".

The design carried out by ExtraMile Consulting has been prepared in accordance with:

✓ compliance documents issued by the Ministry of Business, Innovation & Employment (Verification method /acceptable solution): B1/AM1 and AS1

The proposed building work covered by this producer statement is described in the drawings specified in the attached Schedule, together with the specification, and other documents set out in the attached Schedule.

On behalf of ExtraMile Consulting, and subject to:

• all proprietary products meeting their performance specification requirements and application being within occupancy and wind limits as stated on the drawings;

I believe on reasonable grounds that:

- the building, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached Schedule, will comply with the relevant provisions of the Building Code specified above; and that
- the persons who have undertaken the design have the necessary competence to do so.

I recommend the Nil level of construction monitoring.

Job Number: 24042

Compilation Date and Time: 15 January 2025 at 12:12 pm

PS1 - DESIGN - JANUARY 2024 (REV 01)

PAGE 1 OF 4

I, Pawel Michal Milewski, am:

• CPEng number 1021657

• and hold the following qualifications: MEng(Hons)

ExtraMile Consulting holds a current policy of Professional Indemnity Insurance no less than \$200,000.

ExtraMile Consulting is not a member of ACE New Zealand.

SIGNED BY: Pawel Michal Milewski

(Signature):

Date: 15/01/2075

ON BEHALF OF: ExtraMile Consulting

Note: This statement has been prepared solely for relevant teritorial authority and shall not be relied upon by any other person or entity. Any liability in relation to this statement accrues to ExtraMile Consulting only. As a condition of reliance on this statement, teritorial authority accepts that the total maximum amount of liability of any kind arising from this statement and all other statements provided to the authority in relation to this building work, whether in tort or otherwise, is limited to the sum of \$200,000.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

SCHEDULE TO PS1

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

• Engineering Drawing Set: drawings showing typical details

Limited Scope of Engagement

We have been engaged by FMI Building Innovation to provide services in respect of the requirements of the Clause(s) of the Building Code specified above for the following parts of the proposed building work:

Proprietary Balustrade System

Job Number: 24042

Compilation Date and Time: 15 January 2025 at 12:12 pm

PS1 - DESIGN - JANUARY 2024 (REV 01)

Por

GUIDANCE ON USE OF PRODUCER STATEMENTS

Information on the use of Producer Statements and Construction Monitoring Guidelines can be found on either the <u>ACE New Zealand</u> or <u>Engineering New Zealand</u> websites.

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects (NZIA), Institution of Professional Engineers New Zealand (now Engineering New Zealand), Association of Consulting and Engineering New Zealand (ACE NZ) in consultation with the Building Officials Institute of New Zealand (BOINZ). The original suite of producer statements has been revised at the date of this form to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with part of the reasonable grounds necessary for the issue of a Building Consent or a Code Compliance Certificate, without necessarily having to duplicate review of design or construction monitoring undertaken by others.

PS1 DESIGN: Intended for use by a suitably qualified independent engineering design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 DESIGN REVIEW: Intended for use by a suitably qualified independent engineering design review professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

PS3 CONSTRUCTION: Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or Schedules E1/E2 of NZIA's SCC 20112

PS4 CONSTRUCTION REVIEW: Intended for use by a suitably qualified independent engineering construction monitoring professional who either undertakes or supervises construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Engineering Professional

This statement is made by an engineering firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its personnel.

The person signing the Producer Statement on behalf of the engineering firm will have a professional qualification and proven current competence through registration on a national competence-based register such as a Chartered Professional Engineer (CPEng). Membership of a professional body, such as Engineering New Zealand provides additional assurance of the designer's standing within the profession. If the engineering firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent engineering professional".

Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard practice for the relationship between the BCA and the engineering firm.

Professional Services during Construction Phase

There are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for engineers3). The BCA is encouraged to require that the service to be provided by the engineering firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

BCAs should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued. No design professional should be expected to provide a producer statement unless such a requirement forms part of ExtraMile Consulting's engagement.

Refer Also:

- 1 Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- NZIA Standard Conditions of Contract SCC 2011
- 3 Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)
- 4 PN01 Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org

fr

Job Number: 24042

Compilation Date and Time: 15 January 2025 at 12:12 pm

PRC	ClearVista Aluminium Post System AP54	PROJECT NO:	24042
TIT	E: Introduction	PAGE:	1 ^{OF:} 11
DAT	E: 19 February 2025 BY: PM REV: 1	STATUS:	for information

ExtraMile Consulting has been appointed by FMI Building Innovation to provide structural engineering design services in relation to a proprietary balustrade system.

The system is designed around proprietary, extruded aluminium posts with toughened, 8-12.52mm thick safety glass panels spanning between them. Profile of posts includes recess that forms glazing channel for the glass to sit in. The glass is separated from the post material by proprietary neoprene gasket.

The system also includes optional top handrail in two profiles: rectangular and oval.

Posts are fixed to supporting structure by:

- a) floor mounted baseplates;
- b) lateral mounted brackets.

The type of fixings required is dependant on the type and material of the supporting structure. Fixing details for steel, concrete and timber are justified in this calculation set and shown on drawings. Capability of supporting structure to transfer the loads from posts is outside of the scope of this calculation and the supporting structure should be designed by others.

The strength of posts and their baseplates was determined by testing - test report is included in appendix A.

CONTENTS INDEX:

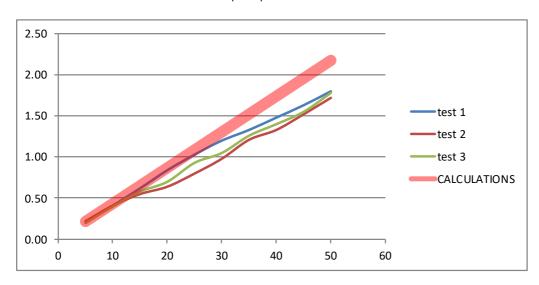
1.	Producer Statement 1 – Design	Page 2
2.	Structural Calculations	Page 6
3.	Appendix A – test report	Page 17
4.	Appendix B – concrete anchor design	Page 24
5.	Appendix C - Lateral Mounted Design drawings	Page 48
6.	Appendix D - Floor Mounted Design drawings	Page 64

References:

- -AS/NZS 1170 part 0 -Structural Design Actions General Principles
- -AS/NZS 1170 part 1 -Structural Design Actions Permanent, imposed and other actions
- -AS/NZS 1170 part 2 -Structural Design Actions Wind actions
- -AS/NZS 3603 Timber Structures
- -NZS 4221.1: 20016 Glazing in Buildings
- -NZS 3404 Steel Structures
- -NZS 3101 Concrete Structures
- -NZTIF Timber Design Guide
- -DBH Guidance on Barrier design, 2022

	<u>ClearV</u> is	ta Aluminium Pos	st Sys	tem AP54		PROJECT NO:		24042	
		loads				PAGE:	2	OF:	11
19 Feb	ruary 2025	BY:	РМ	REV:	1	STATUS:	for	information	
Imposed Lo	ads:								
1.	المصادر والسائدة	 	م انصا		- A.		[[cN]/ma]	0.25	
case 1:		load along the hand					[kN/m]	0.35	
	aistributea	load along the hand	raii - o	ссирапсу тур	e C3, B, E		[kN/m]	0.75	
case 2:	distributed	load to the infill - occ	cupano	y type A:			[kPa]	0.50	
	distributed	load to the infill - oc	cupano	y type C3, B,	E:		[kPa]	1.00	
case 3:	point load a	t top - occupancy ty	pe A:					0.60	
		t top - occupancy ty		B, E:				0.60	
Wind loads:	:								
Design is ca	rried out for wi	nd speeds that corre	espond	to Low, Med	ium, High,				
		vind zones as define			, , ,				
Based on ta	ble 5.4 of NZS	3604, following wind	d speed	ds have been	assigned				
to correspo	nding wind zone	es:							
		- Low (L)					[m/s]	32	
		-Medium (M)					[m/s]	37	
		-High (H)					[m/s]	44	
		-Very High (VH)					[m/s]	50	
		-Extra High (XH)					[m/s]	55	
Taking abov	ve wind speeds	into account and us	sing ne	t pressure co	efficient of:		[-]	1.30	
	in various wind	d zones will be subje	ct to fo	ollowing ultin	nate				
face loads:									
		- Low (L)					[kPa]	0.80	
		-Medium (M)					[kPa]	1.07	
		-High (H)					[kPa]	1.51	
		-Very High (VH)					[kPa]	1.95	
		-Extra High (XH)					[kPa]	2.36	
service wind	d loads will be t	aken as 0.676 of ult	imate	wind loads					

test results		24042		PROJECT NO:		tem AP54	um Post Sys		ClearVi		PROJECT:
Calculation of post strength based on test results: Calculation of strengths based on test results will be carried out in accordance with appendix B to AS/NZS1170.0 with reduction factors taken from table B1. assume coefficient of variation: [-] 10% no of tests for each configuration: [no] 3 therefore reduction factor, kt: [-] 1.33 Face fix system: min. bending moment at failure: [kNm] 4.42 Surface Mounted System: min. bending moment at failure: [kNm] 2.24	11	OF:		PAGE:							
Calculation of strengths based on test results will be carried out in accordance with appendix B to AS/NZS1170.0 with reduction factors taken from table B1. assume coefficient of variation: [-] 10% no of tests for each configuration: [no] 3 therefore reduction factor, kt: [-] 1.33 Face fix system: min. bending moment at failure: [kNm] 4.42 Surface Mounted System: min. bending moment at failure: [kNm] 3.32		rinformation	for	STATUS:	1	REV:	PM	BY:	February 2025		:
appendix B to AS/NZS1170.0 with reduction factors taken from table B1. assume coefficient of variation: [-] 10% no of tests for each configuration: [no] 3 therefore reduction factor, kt: [-] 1.33 Face fix system: min. bending moment at failure: [kNm] 4.42 Surface Mounted System: min. bending moment at failure: [kNm] 2.24							est results:	h based on te	ation of post streng	Cald	
no of tests for each configuration: therefore reduction factor, kt: Face fix system: min. bending moment at failure: (kNm) 4.42 ultimate bending capacity: [kNm] 3.32 Surface Mounted System: min. bending moment at failure: [kNm] 2.24				ith							
therefore reduction factor, kt: Face fix system: min. bending moment at failure: [kNm] 4.42 ultimate bending capacity: [kNm] 3.32 Surface Mounted System: min. bending moment at failure: [kNm] 2.24		10%	[-]					ation:	e coefficient of vari	assı	
Face fix system: min. bending moment at failure: ultimate bending capacity: [kNm] 3.32 Surface Mounted System: min. bending moment at failure: [kNm] 2.24		3	[no]					uration:	ests for each config	no c	
min. bending moment at failure: ultimate bending capacity: [kNm] 3.32 Surface Mounted System: min. bending moment at failure: [kNm] 2.24		1.33	[-]					, kt:	ore reduction factor	the	
ultimate bending capacity: [kNm] 3.32 Surface Mounted System: min. bending moment at failure: [kNm] 2.24									ix system:	Fac	
Surface Mounted System: min. bending moment at failure: [kNm] 2.24		4.42	[kNm]				at failure:	ng moment a	min. bendi		
min. bending moment at failure: [kNm] 2.24		3.32	[kNm]				ity:	ending capaci	ultimate b		
								:	e Mounted System	Sur	
ultimate bending capacity: [kNm] 1.68		2.24	[kNm]				at failure:	ng moment a	min. bendi		
		1.68	[kNm]				ity:	ending capaci	ultimate b		

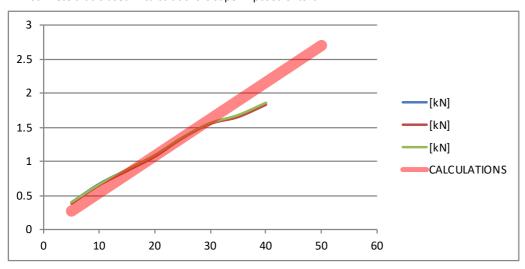


PROJ	ClearVista Aluminium Post System AP54	PROJECT NO:	24042
TITL	test results	PAGE:	4 ^{OF:} 11
DATE	19 February 2025 BY: PM REV: 1	STATUS:	for information

Calculation of post stiffness based on test results:

Face fix system:

Chart with force-deflection relationship is shown below. Linear stiffness that is used in calculations is superimposed onto it:


simplified, linear approximation is based on stiffness:

[kNm2]

14.50

Surface mounted system:

Chart with force-deflection relationship is shown below. Linear stiffness that is used in calculations is superimposed onto it:

simplified, linear approximation is based on stiffness:

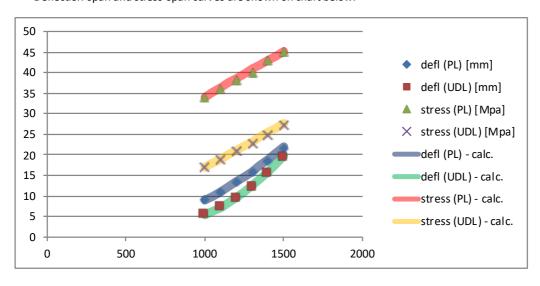
[kNm2]

18.00

PROJECT:	ClearVista A	PROJECT NO:	24042		
TITLE:		PAGE:	5 OF:	11	
DATE:	19 February 2025	PM	STATUS:	for information	

Calculation of deflections and stresses of glass panel:

Calculation of deflection of flat elastic plate simply supported and loaded along one edge with a line or point load is complex. In order to achieve accurate results deflections were calculated by FEM for a number of panel sizes to inform development of continuous panel span-deflection relationship curve that was used in calculations. 960 high panel was considered for two load cases:


(PL) - unity point load applied to centre of top edge;

(UDL) - unity line load applied to top edge.

Results are presented in tables and on charts shown below:

width	defl (PL)	defl (UDL)	stress (PL)	stress (UDL)
	[mm]	[mm]	[Mpa]	[Mpa]
1000	9.012	5.4	34	17
1100	11.001	7.25	36	18.8
1200	13.27	9.54	38	20.85
1300	15.74	12.28	40	22.78
1400	18.56	15.6	43	24.9
1500	21.62	19.5	45	27.2

Deflection-span and stress-span curves are shown on chart below:

PROJECT: ClearVista	a Aluminium Post Syste	PROJECT NO:	24042			
TITLE:	balustrade calculation PAGE					
DATE: 19 February 2025	BY: PM	REV: 1	STATUS:	for information		

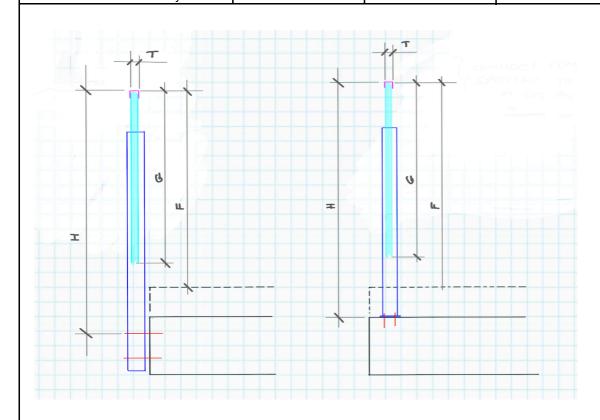
This Calculation Set Justifies Following Balustrade Configurations

Assembly Type	Mounting Type	Ocupancy	Wind Zone	н	F	G	т	H-rail	Post Spacing	Style
В	S	C3_B_E	М	1100	1100	1023	12	0	1.35	VRF54-1-A
В	S	C3_B_E	Н	1100	1100	1023	12	0	1.35	VRF54-1-A
В	S	C3_B_E	VH	1100	1100	1023	12	0	1.35	VRF54-1-A
В	S	C3_B_E	EH	1100	1100	1023	12	0	1.15	VRF54-1-A
В	S	C3_B_E	М	1100	1100	963	12	0	1.35	VRF54-1-B
В	S	C3_B_E	Н	1100	1100	963	12	0	1.35	VRF54-1-B
В	S	C3_B_E	VH	1100	1100	963	12	0	1.35	VRF54-1-B
В	S	C3_B_E	EH	1100	1100	963	12	0	1.15	VRF54-1-E
В	S	C3_B_E	М	1100	1100	1025	12	r	1.35	VRF54-1-
В	S	C3_B_E	Н	1100	1100	1025	12	r	1.35	VRF54-1-
В	S	C3_B_E	VH	1100	1100	1025	12	r	1.35	VRF54-1-A
В	S	C3_B_E	EH	1100	1100	1025	12	r	1.15	VRF54-1-
В	S	C3_B_E	М	1100	1100	965	12	r	1.35	VRF54-1-E
В	S	C3_B_E	Н	1100	1100	965	12	r	1.35	VRF54-1-E
В	S	C3_B_E	VH	1100	1100	965	12	r	1.35	VRF54-1-E
В	S	C3_B_E	EH	1100	1100	965	12	r	1.15	VRF54-1-6
В	S	C3_B_E	М	1230	1030	953	12	0	1.2	VRF54-1-0
В	S	C3_B_E	Н	1230	1030	953	12	0	1.2	VRF54-1-0
В	S	C3_B_E	VH	1230	1030	953	12	0	1.2	VRF54-1-0
В	S	C3_B_E	EH	1230	1030	953	12	0	0.95	VRF54-1-0
В	S	C3_B_E	М	1230	1030	893	12	0	1.2	VRF54-1-[
В	S	C3_B_E	Н	1230	1030	893	12	0	1.2	VRF54-1-
В	S	C3_B_E	VH	1230	1030	893	12	0	1.2	VRF54-1-
В	S	C3_B_E	EH	1230	1030	893	12	0	1	VRF54-1-
В	S	C3_B_E	М	1230	1030	955	12	r	1.2	VRF54-1-
В	S	C3_B_E	Н	1230	1030	955	12	r	1.2	VRF54-1-
В	S	C3_B_E	VH	1230	1030	955	12	r	1.2	VRF54-1-
В	S	C3_B_E	EH	1230	1030	955	12	r	0.95	VRF54-1-
В	S	C3_B_E	М	1230	1030	895	12	r	1.2	VRF54-1-
В	S	C3_B_E	Н	1230	1030	895	12	r	1.2	VRF54-1-
В	S	C3_B_E	VH	1230	1030	895	12	r	1.2	VRF54-1-I
В	S	C3_B_E	EH	1230	1030	895	12	r	1	VRF54-1-I
В	S	C3_B_E	М	1100	1100	1040	12	n	1.35	VRF54-1-
В	S	C3_B_E	Н	1100	1100	1040	12	n	1.35	VRF54-1-
В	S	C3_B_E	VH	1100	1100	1040	12	n	1.35	VRF54-1-
В	S	C3_B_E	EH	1100	1100	1040	12	n	1.15	VRF54-1-
В	S	C3_B_E	М	1230	1030	970	12	n	1.2	VRF54-1-
В	S	C3_B_E	Н	1230	1030	970	12	n	1.2	VRF54-1-
В	S	C3_B_E	VH	1230	1030	970	12	n	1.2	VRF54-1-
В	S	C3_B_E	EH	1230	1030	970	12	n	0.95	VRF54-1-
Р	S	C3_B_E	М	1230	1230	1170	12	n	1.95	VRF54-1-0
Р	S	C3_B_E	Н	1230	1230	1170	12	n	1.45	VRF54-1-0
Р	S	C3_B_E	VH	1230	1230	1170	12	n	1.2	VRF54-1-0
Р	S	C3_B_E	EH	1230	1230	1170	12	n	0.9	VRF54-1-0

PROJECT:	ClearVista	ClearVista Aluminium Post System AP54							
TITLE:	balustrade calculation PAGE						7	OF:	11
DATE:	19 February 2025	BY: P	M	REV:	1	STATUS:	for i	nformatior	١

This Calculation Set Justifies Following Balustrade Configurations

sembly Type	Mounting Type	Ocupancy	Wind Zone	н	F	G	т	H-rail	Post Spacing	Style
Р	S	C3_B_E	М	1230	1230	1170	12	n	1.95	VRF54-1-I
Р	S	C3_B_E	Н	1230	1230	1170	12	n	1.45	VRF54-1-
Р	S	C3_B_E	VH	1230	1230	1170	12	n	1.2	VRF54-1-
Р	S	C3_B_E	EH	1230	1230	1170	12	n	0.9	VRF54-1-
W	S	C3_B_E	М	1800	1800	1740	12	n	0.95	VRF54-1-
W	S	C3_B_E	Н	1800	1800	1740	12	n	0.65	VRF54-1-
W	S	C3_B_E	VH	1800	1800	1740	12	n	0.55	VRF54-1
W	S	C3_B_E	EH	1800	1800	1740	12	n	0.4	VRF54-1
W	S	C3_B_E	М	1800	1800	1738	12	n	0.95	VRF54-1
W	S	C3_B_E	Н	1800	1800	1738	12	n	0.65	VRF54-1
W	S	C3_B_E	VH	1800	1800	1738	12	n	0.55	VRF54-1
W	S	C3 B E	EH	1800	1800	1738	12	n	0.4	VRF54-1
W	S	C3_B_E	М	1600	1600	1540	12	r	1.2	VRF54-1
W	S	C3_B_E	Н	1600	1600	1540	12	r	0.85	VRF54-1
W	S	C3_B_E	VH	1600	1600	1540	12	r	0.7	VRF54-1
W	S	C3_B_E	EH	1600	1600	1540	12	r	0.55	VRF54-:
W	S	C3_B_E	М	1600	1600	1538	12	r	1.2	VRF54-1
W	S	C3_B_E	Н	1600	1600	1538	12	r	0.85	VRF54-1
W	S	C3_B_E	VH	1600	1600	1538	12	r	0.7	VRF54-:
W	S	C3_B_E	EH	1600	1600	1538	12	r	0.55	VRF54-:
В	F	C3_B_E	M	1132	1100	1023	12	0	1.95	VRL54-1
В	F	C3_B_E	Н	1132	1100	1023	12	0	1.95	VRL54-1
В	F	C3_B_E	VH	1132	1100	1023	12	0	1.95	VRL54-1
В	F	C3_B_E	EH	1132	1100	1023	12	0	1.95	VRL54-1
В	F	C3_B_E	M	1132	1100	963	12	0	1.95	VRL54-1-
В	F	C3_B_E	H	1132	1100	963	12	0	1.95	VRL54-1
В	F	C3_B_E	VH	1132	1100	963	12	0	1.95	VRL54-1
В	F	C3 B E	EH	1132	1100	963	12	0	1.9	VRL54-1
В	F	C3_B_E	M	1232	1000	923	12	0	1.95	VRL54-1-
В	F	C3_B_E	H	1232	1000	923	12	0	1.95	VRL54-1
В	F	C3_B_E	VH	1232	1000	923	12	0	1.95	VRL54-1
В	F	C3_B_E	EH	1232	1000	923	12	0	1.8	VRL54-1
В	F	C3_B_E	M	1232	1000	863	12	0	1.95	VRL54-1
В	F	C3_B_E	H	1232	1000	863	12	0	1.95	VRL54-1
В	F	C3_B_E	VH	1232	1000	863	12	0	1.95	VRL54-1
В	F	C3_B_E	EH	1232	1000	863	12	0	1.75	VRL54-1-
В	F	C3_B_E	M	1132	1100	1025	12	r	1.95	VRL54-1
В	F	C3_B_E	H	1132	1100	1025	12	r	1.95	VRL54-1
В	F	C3_B_E	VH	1132	1100	1025	12	r	1.95	VRL54-1
В	F	C3_B_E	EH	1132	1100	1025	12	r	1.95	VRL54-1
В	F	C3_B_E	Н	1132	1100	965	12	r	1.95	VRL54-1
В	F	C3_B_E	H	1132	1100	965	12	r	1.95	VRL54-1
В	F	C3_B_E	Н	1132	1100	965	12	r	1.95	VRL54-1
В	F	C3_B_E	VH	1132	1100	965	12	r	1.95	VRL54-1-


	PROJECT:	ClearVista Aluminium Post System AP54					PROJECT NO:		24042	
	TITLE:	E: balustrade calculation PAG				PAGE:	8	OF:	11	
ſ	DATE:	19 February 2025	BY:	PM	REV:	1	STATUS:	for i	nformation	

This Calculation Set Justifies Following Balustrade Configurations

Assembly Type	Mounting Type	Ocupancy	Wind Zone	Н	F	G	Т	H-rail	Post Spacing	Style
В	F	C3_B_E	М	1232	1000	925	12	r	1.95	VRL54-1-C1
В	F	C3_B_E	Н	1232	1000	925	12	r	1.95	VRL54-1-C1
В	F	C3_B_E	VH	1232	1000	925	12	r	1.95	VRL54-1-C
В	F	C3_B_E	EH	1232	1000	925	12	r	1.8	VRL54-1-C
В	F	C3_B_E	М	1232	1000	865	12	r	1.95	VRL54-1-D
В	F	C3_B_E	Н	1232	1000	865	12	r	1.95	VRL54-1-D
В	F	C3 B E	VH	1232	1000	865	12	r	1.95	VRL54-1-D
В	F	C3 B E	EH	1232	1000	865	12	r	1.75	VRL54-1-D
В	F	C3_B_E	М	1132	1100	1040	12	n	1.55	VRL54-1-E
В	F	C3_B_E	Н	1132	1100	1040	12	n	1.55	VRL54-1-E
В	F	C3_B_E	VH	1132	1100	1040	12	n	1.55	VRL54-1-E
В	F	C3_B_E	EH	1132	1100	1040	12	n	1.55	VRL54-1-E
В	F	C3_B_E	M	1232	1000	940	12	n	1.45	VRL54-1-F
В	F	C3_B_E	H	1232	1000	940	12	n	1.45	VRL54-1-F
В	F	C3_B_E	VH	1232	1000	940	12	n	1.45	VRL54-1-F
В	F	C3_B_E	EH	1232	1000	940	12	n	1.45	VRL54-1-F
P	F F	C3_B_E	M	1262	1230	1170	12	n	1.95	VRL54-1-G
P		C3_B_E	H	1262	1230	1170	12	n	1.95	VRL54-1-G
P	F	C3_B_E	VH	1262	1230	1170	12	n	1.95	VRL54-1-G
Р	F	C3_B_E	EH	1262	1230	1170	12	n	1.75	VRL54-1-G
Р	F	C3_B_E	М	1262	1230	1168	12	n	1.95	VRL54-1-H
Р	F	C3_B_E	Н	1262	1230	1168	12	n	1.95	VRL54-1-H
Р	F	C3_B_E	VH	1262	1230	1168	12	n	1.95	VRL54-1-H
Р	F	C3_B_E	EH	1262	1230	1168	12	n	1.75	VRL54-1-H
W	F	C3_B_E	М	1832	1800	1740	12	n	1.85	VRL54-1-K
W	F	C3_B_E	Н	1832	1800	1740	12	n	1.3	VRL54-1-K
W	F	C3_B_E	VH	1832	1800	1740	12	n	1.1	VRL54-1-K
W	F	C3_B_E	EH	1832	1800	1740	12	n	0.8	VRL54-1-K
W	F	C3_B_E	М	1832	1800	1738	12	n	1.85	VRL54-1-L
W	F	C3_B_E	Н	1832	1800	1738	12	n	1.3	VRL54-1-L
W	F	C3_B_E	VH	1832	1800	1738	12	n	1.1	VRL54-1-L
W	F	C3_B_E	EH	1832	1800	1738	12	n	0.8	VRL54-1-L
W	F	C3_B_E	М	1632	1600	1540	12	n	1.95	VRL54-1-I
W	F	C3_B_E	Н	1632	1600	1540	12	n	1.65	VRL54-1-I
W	F	C3_B_E	VH	1632	1600	1540	12	n	1.35	VRL54-1-I
W	F	C3_B_E	EH	1632	1600	1540	12	n	1.05	VRL54-1-I
W	F	C3_B_E	М	1632	1600	1538	12	n	1.95	VRL54-1-J
W	F	C3_B_E	Н	1632	1600	1538	12	n	1.65	VRL54-1-J
W	F	C3_B_E	VH	1632	1600	1538	12	n	1.35	VRL54-1-J
W	F	C3_B_E	EH	1632	1600	1538	12	n	1.05	VRL54-1-J
	'	60_B_E	211	1002	1000	1330		.,	1.05	VICESTI

PROJECT:	ClearVista Aluminium Post System AP54					PROJECT NO:	24042	
TITLE:	balustrade calculation PAC					PAGE:	9 OF:	11
DATE:	19 February 2025 BY: PM REV: 1					STATUS:	for information	1

Assembly Type B - balustrade

P -Pool Fence W - Wind Break

Mounting Type S - Surface

F - Face

Occupancy A - Self Contained Dwelling, Internal

C3, B, E - Stairs, External Balconies Edges of Roofs and Offices

Wind Zone M - Medium

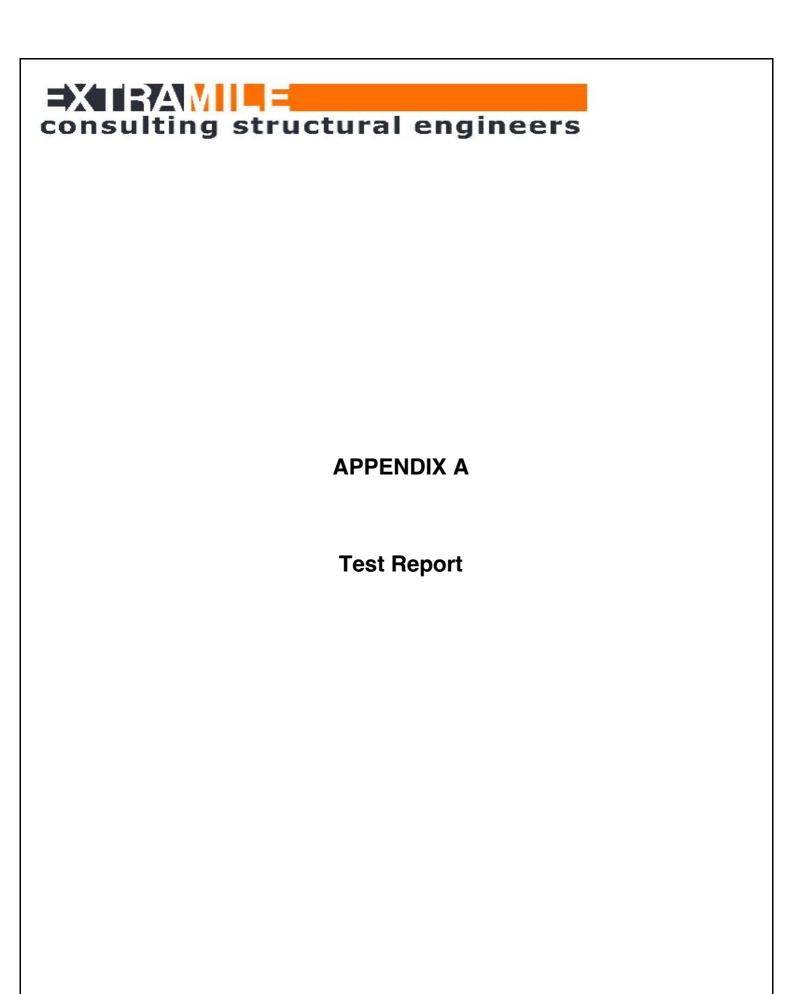
H- High

VH - Very High EH - Extra High

Handrail n- none

o- oval r- rectangle

H:


H' for calculations is measured to the top fixing which is different to measurements shown on the drawings

Т:	ClearVis	sta Aluminium F	ost Sys	stem AP54		PROJECT NO:		24042	
		balustrade ca	alculatio	n		PAGE:	10	OF:	11
	19 February 2025	BY:	PM	REV:	1	STATUS:	for	information	
	Connections - face fixed sy	vstem:							
	In case of both face fixed a					a pair			
	of forces transferring the n	noment and shea	r force in	to supporting s	tructure.				
	Max. moment to be transf	ferred by the conr	nection:				[kNm]	3.31	
	Max. coinciding force						[kN]	4.97	
	wax. concluing force						[KIV]	4.57	
	-concrete								
	concrete compressive stre	ngth:					[Mpa]	25	
	therefore take concrete be	earing strength as	:				[Mpa]	25	
	depth of compression zone	e:					[mm]	14.0	
	lever arm:						[mm]	143.00	
	bearing stress:						[Mpa]	25.4	
	tension in fixing:						[kN]	28.12	
	(including contribution of t	he shear force)							
	Hilti HAS-U A4 threaded mm embedment h_ef, N 19/0601					Α			
	<u>-steel</u>								
	Use minimum 2no M16 4.	6 bolts, capacity:					[kN]	50	
	OK by inspection						[]		
	<u>-timber</u>								
	timber bearing strength:						[Mpa]	8.5	
	depth of compression zone	e:					[mm]	42	
	lever arm:						[mm]	141.00	
	bearing stress:						[Mpa]	8.6	
	tension in bolt:						[kN]	28.45	ok
	design capacity of 12 Scre	w by Spax					[N/mm]	106.40	
	required embedment if tw						[mm]	133.67	
	use 12x200 fully treaded f	lat countersunk so	crews by	SPAXwith alur	niniuum csk w	vasher by Wurth			

ClearVist	a Aluminium Post Sys	tem <u>AP5</u> 4		PROJECT NO:		24042	
	balustrade calculation	1		PAGE:	11	OF:	11
19 February 2025	PM PM	REV:	1	STATUS:	for	information	
Connections - Surface mou	nted system (plate length	wise)					
In case of both face fixed a	nd surface mounted syste	ms the post i	is restrained b	y a pair			
of forces transferring the m	oment and shear force int	o supporting	structure.				
Max. moment to be transfe	erred by the connection:				[kNm]	1.67	
Max. coinciding force					[kN]	3.38	
-concrete							
concrete compressive stren	gth:				[Mpa]	25	
therefore take concrete bea					[Mpa]	25	
depth of compression zone					[mm]	9.0	
lever arm:	•				[mm]	98.50	
bearing stress:					[Mpa]	25.1	
tension in fixing:					[kN]	16.95	
19/0601	t h_ef, M12, Stainless	steel, Han	nmer drilling	installation per	r EIA		
<u>-steel</u>							
Use minimum 2no M16 4.6 OK by inspection	bolts, capacity:				[kN]	50	
-timber (wet)							
timber bearing strength:					[Mpa]	5.1	
depth of compression zone	:				[mm]	60	
lever arm:					[mm]	73.00	
bearing stress:					[Mpa]	5.1	
tension in 2 screws/bolts:					[kN]	22.88	
8 spax screw					[N/mm]	70.70	
required embedment if two	screws used:				[mm]	161.79	
use 180x8 delta seal spax s	crew						

Report from testing of proprietary extruded aluminium balustrade posts:

Background:

Glass Fittings Limited intends to introduce to the market a proprietary balustrade, pool fence and windbreak system. The system comprises a series of extruded aluminium posts with frameless glass infill spanning between them. Photograph of typical application is included below:

Components of the system include:

- 10 or 12mm thick toughened safety glass panels;
- Proprietary extruded aluminium posts;
- Fixing baseplates and brackets.

ExtraMile Consulting Ltd. has been engaged to produce typical designs for a variety of repetitive balustrade system applications.

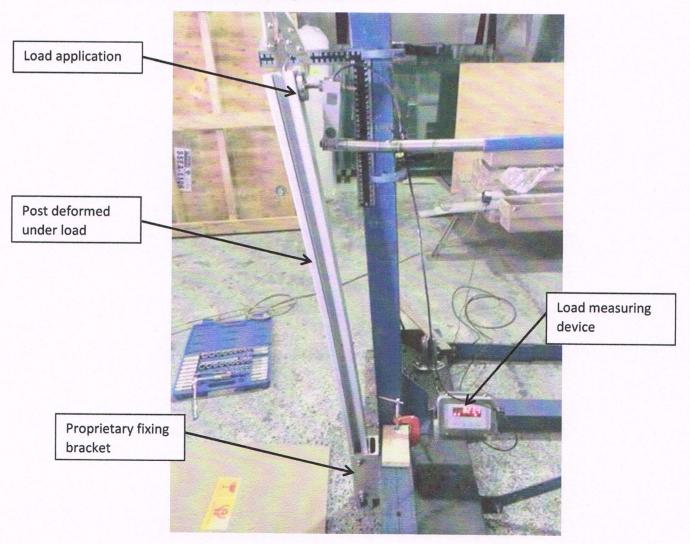
As a part of the design process it was considered necessary to carry out physical tests of the posts and their base connections, in order to determine their strength and stiffness.

This report describes the procedure and summarises results of tests that were carried out.

Purpose of tests:

The purpose of tests was to determine:

- (A) Ultimate bending strength of the post assembly;
- (B) Stiffness of the post assembly.


Test setup:

Tests were carried out on 1m high post assemblies.

Specimens were fixed in the testing rig in a way replicating typical system connection.

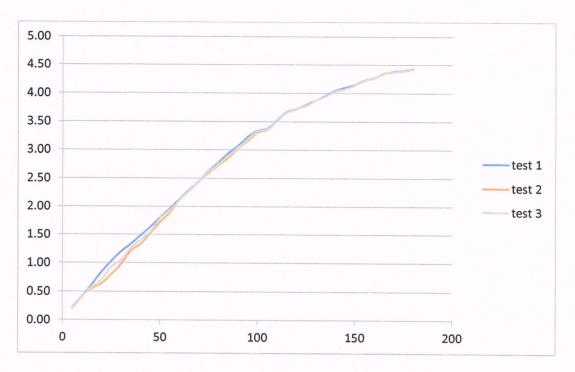
Force was applied by a hydraulic jack combined with the load measuring device.

Photograph of typical test setup is presented below:

Test procedure:

The load was applied to the top of the post gradually with the resultant deflection being constantly monitored and the load recorded at every 5mm of movement. The procedure was continued up to the failure of the specimen.

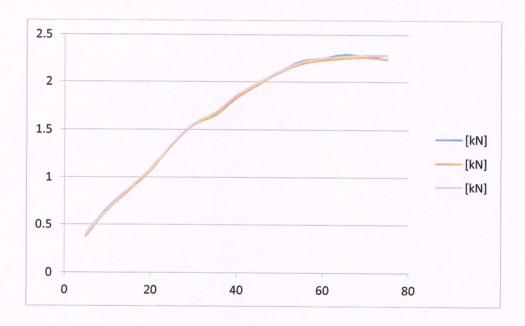
Test was repeated for 3 no specimens for surface mounted system and 3 no specimens for face fixed system.


Test results:

Results of all tests are presented in tables and on charts below:

(A) Face fix system:

deflection	test 1	test 2	test 3
[mm]	[kN]	[kN]	[kN]
5	0.20	0.22	0.20
10	0.41	0.41	0.40
15	0.62	0.55	0.58
20	0.84	0.64	0.70
25	1.03	0.80	0.93
30	1.20	0.98	1.05
35	1.33	1.21	1.26
40	1.48	1.33	1.40
45	1.63	1.52	1.55
50	1.80	1.72	1.78
55	1.96	1.89	1.93
60	2.13	2.12	2.11
65	2.30	2.28	2.29
70	2.46	2.45	2.46
75	2.63	2.60	2.62
80	2.78	2.73	2.75
85	2.94	2.86	2.90
90	3.07	3.03	3.04
95	3.23	3.16	3.19
100	3.34	3.31	3.33
105	3.38	3.36	3.37
110	3.52	3.51	3.51
115	3.67	3.66	3.66
120	3.73	3.72	3.73
125	3.79	3.80	3.78
130	3.88	3.88	3.88
135	3.96	3.95	3.95
140	4.05	4.04	4.03
145	4.10	4.07	4.07
150	4.15	4.15	4.14
155	4.22	4.23	4.22
160	4.26	4.27	4.26
165	4.34	4.35	4.34
170	4.38	4.37	4.37
175	4.40	4.40	4.39
180	4.42	4.43	4.42



(B) Surface mounted system:

defl.	test 1	test 2	test 3
[mm]	[kN]	[kN]	[kN]
5	0.4	0.38	0.4
10	0.67	0.65	0.66
15	0.88	0.86	0.88
20	1.09	1.07	1.09
25	1.35	1.34	1.35
30	1.56	1.55	1.56
35	1.67	1.65	1.68
40	1.85	1.83	1.86
45	1.99	1.97	1.99
50	2.11	2.10	2.11
55	2.22	2.19	2.21
60	2.25	2.23	2.25
65	2.29	2.25	2.27
70	2.27	2.26	2.28
75	2.28	2.24	2.28

APPENDIX B

Concrete anchor design reports

www.hilti.co.nz

Company: Page: Address: Specifier: E-Mail:

Phone I Fax: 24042-face fix Design:

Fastening Point: typical face fixed bracket

Specifier's comments: covers worst case from all configurations

1 Input data

Anchor type and size: HIT-HY 200-R V3 + HAS A4 M12

Return period (service life in years):

Item number: 2390264 HAS A4 M12x160 (insert) / 2262131

HIT-HY 200-R V3 (mortar)

Specification text: Hilti HAS-U A4 threaded rod with HIT-HY

200-R V3 injection mortar with 130 mm embedment hef, M12, Stainless steel, Hammer

drilling installation per ETA 19/0601

Effective embedment depth: $h_{ef.act} = 130.0 \text{ mm } (h_{ef.limit} = - \text{ mm})$

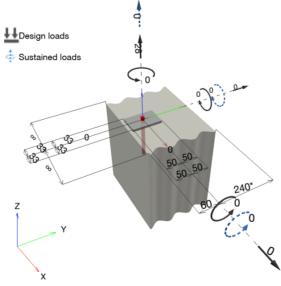
Material: A4

Approval No.: ETA 19/0601 Issued I Valid: 29/01/2024 | -

Proof: Design Method EN 1992-4, Chemical Stand-off installation: $e_h = 0.0 \text{ mm}$ (no stand-off); t = 8.0 mm

 $I_x \times I_y \times t = 66.0 \text{ mm} \times 100.0 \text{ mm} \times 8.0 \text{ mm}$; (Recommended plate thickness: not calculated) Baseplate^R:

Profile: no profile


Base material: uncracked concrete, C25/30, $f_{c,cyl}$ = 25.00 N/mm 2 ; h =1,000.0 mm, Temp. short/long: 40/24 °C, User-defined partial material safety factor γ_c = 1.500

Installation: Hammer drilled hole, Installation condition: Dry

No reinforcement or Reinforcement spacing >= 150 mm (any \emptyset) or >= 100 mm (\emptyset <= 10 mm) Reinforcement:

no longitudinal edge reinforcement

Geometry [mm] & Loading [kN, kNm]

Date:

7/11/2024

^R - The anchor calculation is based on a rigid baseplate assumption.

www.hilti.co.nz

Company: Page: 2
Address: Specifier:

Phone I Fax: | E-Mail:

Design: 24042-face fix Date: 7/11/2024
Fastening Point: typical face fixed bracket

1.1 Load combination

Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
1	Combination 1	$N = 28.000; V_x = 0.000; V_y = 0.000;$	<u>no</u>	<u>no</u>	<u>100</u>
		$\frac{M_{x} = 0.000; M_{y} = 0.000; M_{z} = 0.000;}{M_{sus} = 0.000; M_{x.sus} = 0.000; M_{y.sus} = 0.000;}$			
2	Combinaation 2	$N = 1.000; V_x = 0.000; V_y = 0.000;$ $M_x = 0.000; M_y = 0.000; M_z = 0.000;$ $N_{sus} = 0.000; M_{x.sus} = 0.000; M_{v.sus} = 0.000;$	C1	no	9

2 Load case/Resulting anchor forces

Controlling load case: 1 Combination 1

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anch	nor Tension	force Shear	force Shear fo	rce x Shear force y
1	28.00	0.00	0.000	0.000

 $\label{eq:max_concrete} \begin{array}{ll} \text{Max. concrete compressive strain:} & \text{- } [\%] \\ \text{Max. concrete compressive stress:} & \text{- } [\text{N/mm}^2] \\ \text{Resulting tension force in } (\text{x/y}) = (0.0/0.0): & 28.000 \text{ [kN]} \\ \text{Resulting compression force in } (\text{x/y}) = (-/-): & 0.000 \text{ [kN]} \\ \end{array}$

1 Tension

Anchor forces are calculated based on the assumption of a rigid baseplate.

www.hilti.co.nz

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Phone I Fax: |
Design: 24042-face fix

Fastening Point: typical face fixed bracket

3 Tension load (EN 1992-4, Section 7.2.1)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel failure*	28.000	31.556	89	OK
Combined pullout-concrete cone failure**	28.000	31.697	89	OK
Concrete Breakout failure**	28.000	28.155	100	OK
Splitting failure**	28.000	41.177	68	OK

Date:

3.1 Steel failure

$$N_{\text{Ed}} \leq N_{\text{Rd,s}} = \frac{N_{\text{Rk,s}}}{\gamma_{\text{Ms}}}$$
 EN 1992-4, Table 7.1

N _{Rk,s} [kN]	γ_{Ms}	$N_{Rd,s}$ [kN]	N_{Ed} [kN]
59.010	1.870	31.556	28.000

3

7/11/2024

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.co.nz

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-face fix
 Date:
 7/11/2024

 Fastening Point:
 typical face fixed bracket
 7/11/2024

3.2 Combined pullout-concrete cone failure

$N_{\text{Ed}} \leq N_{\text{Rd}}$	$_{,p} = \frac{N_{Rk,p}}{\gamma_{Mp}}$	EN 1992-4, Table 7.1
$N_{Rk,p}$	$= N_{RK,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{g,Np} \cdot \psi_{s,Np} \cdot \psi_{re,Np} \cdot \psi_{ec1,Np} \cdot \psi_{ec2,Np}$	EN 1992-4, Eq. (7.13)
$N_{Rk,p}^0 \ \Psi_{sus}$	$= \psi_{sus} \cdot \tau_{Rk} \cdot \pi \cdot d \cdot h_{ef}$ $= 1$	EN 1992-4, Eq. (7.14) EN 1992-4, Eq. (7.14a)
s _{cr,Np}	$= 7.3 \cdot d \cdot \sqrt{\psi_{sus} \cdot \tau_{Rk}} \leq 3 \cdot h_{ef}$	EN 1992-4, Eq. (7.15)
$\psi_{\text{ g,Np}}$	$= \psi_{g,Np}^{0} - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^{0} - 1\right) \ge 1.00$	EN 1992-4, Eq. (7.17)
$\psi_{g,Np}^{0}$	$= \sqrt{n} - (\sqrt{n} - 1) \cdot \left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1,5} \ge 1.00$	EN 1992-4, Eq. (7.18)
$\tau_{\rm Rk,c}$	$= \frac{k_3}{\pi \cdot d} \cdot \sqrt{h_{ef} \cdot f_{ck}}$	EN 1992-4, Eq. (7.19)
$\psi_{\text{ s,Np}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}} \le 1.00$	EN 1992-4, Eq. (7.20)
$\psi_{\text{ ec1,Np}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c1,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)
$\Psi_{\text{ ec2,Np}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c2,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)

$A_{p,N}$ [mm ²]	$A_{p,N}^0$ [mm ²]	$\tau_{Rk,ucr,20}$ [N/mm ²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]	f _{c,cyl} [N/mm ²]
91,363	138,128	18.00	371.7	185.8	60.0	25.00
Ψς	$\tau_{Rk,ucr}$ [N/mm 2]	k_3	τ _{Rk,c} [N/mm ²]	$\psi^0_{g,Np}$	$\psi_{g,Np}$	_
1.023	18.41	11.000	16.63	1.000	1.000	
e _{c1,N} [mm]	$\psi_{\text{ec1,Np}}$	e _{c2,N} [mm]	Ψ _{ec2,Np}	$\psi_{\text{s,Np}}$	$\psi_{\text{re,Np}}$	_
0.0	1.000	0.0	1.000	0.797	1.000	
$\psi^0_{ m sus}$	α_{sus}	$\Psi_{\sf sus}$				
0.800	0.000	1.000				
$N_{Rk,p}^0$ [kN]	$N_{Rk,p}$ [kN]	γ_{Mp}	N _{Rd,p} [kN]	N _{Ed} [kN]	_	
90.207	47.546	1.500	31.697	28.000		

Group anchor ID

1

www.hilti.co.nz

Company:		Page:	5
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	24042-face fix	Date:	7/11/2024
Fastening Point:	typical face fixed bracket		

3.3 Concrete Breakout failure

$N_{\text{Ed}} \leq N_{\text{Rd}}$	⁷ Mc	EN 1992-4, Table 7.1
$N_{Rk,c}$	$= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{M,N}$	EN 1992-4, Eq. (7.1)
$N_{Rk,c}^0$	$= k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1,5}$	EN 1992-4, Eq. (7.2)
$N_{Rk,c}^0$ $A_{c,N}^0$	$= s_{cr,N} \cdot s_{cr,N}$	EN 1992-4, Eq. (7.3)
$\psi_{s,N}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{cr,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ ec2,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{N,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{M,N}$	= 1	EN 1992-4, Eq. (7.7)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	f _{c,cyl} [N/mm ²]		
99,450	152,100	195.0	390.0	25.00		
e _{c1,N} [mm]	$\psi_{\text{ ec1,N}}$	e _{c2,N} [mm]	$\psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re},\text{N}}$	z [mm]
0.0	1.000	0.0	1.000	0.792	1.000	0.0
$\Psi_{M,N}$	k ₁	$N_{Rk,c}^0$ [kN]	γ_{Mc}	N _{Rd,c} [kN]	N _{Ed} [kN]	_
1.000	11.000	81.523	1.500	28.155	28.000	-

Group anchor ID

1

www.hilti.co.nz

 Company:
 Page:
 6

 Address:
 Specifier:
 5

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-face fix
 Date:
 7/11/2024

 Fastening Point:
 typical face fixed bracket
 7/11/2024

3.4 Splitting failure

$N_{\text{Ed}} \leq N_{\text{Rd},i}$	$_{\rm sp} = \frac{{\sf N}_{\sf Rk,sp}}{\gamma_{\sf Msp}}$	EN 1992-4, Table 7.1
$N_{Rk,sp}$	$= N_{Rk,sp}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{h,sp}$	EN 1992-4, Eq. (7.23)
$egin{aligned} & oldsymbol{N}_{Rk,sp}^0 \ & oldsymbol{A}_{c,N}^0 \end{aligned}$	$= \min \left(N_{Rk,p}^0, N_{Rk,c}^0 \right)$	
$A_{c,N}^0$	$= \mathbf{s}_{cr,sp} \cdot \mathbf{s}_{cr,sp}$	EN 1992-4, Eq. (7.3)
$\psi_{\text{ s,N}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,sp}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ ec2,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ h,sp}}$	$= \left(\frac{h}{h_{min}}\right)^{2/3} \le \max\left\{1; \left(\frac{h_{ef} + 1.5 \cdot c_1}{h_{min}}\right)^{2/3}\right\} \le 2.00$	EN 1992-4, Eq. (7.24)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,sp} [mm]	s _{cr,sp} [mm]	h _{min} [mm]	$\psi_{\text{ h,sp}}$	f _{c,cyl} [N/mm ²]
49,400	67,600	130.0	260.0	160.0	1.237	25.00
e _{c1,N} [mm]	$\Psi_{\text{ ec1,N}}$	e _{c2,N} [mm]	$\Psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re},\text{N}}$	k ₁
0.0	1.000	0.0	1.000	0.838	1.000	11.000
$N_{Rk,sp}^0$ [kN]	γ_{Msp}	N _{Rd,sp} [kN]	N _{Ed} [kN]			
81.523	1.500	41.177	28.000			

Group anchor ID

1

www.hilti.co.nz

 Company:
 Page:
 7

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-face fix
 Date:
 7/11/2024

 Fastening Point:
 typical face fixed bracket
 7/11/2024

4 Shear load (EN 1992-4, Section 7.2.2)

	Load [kN]	Capacity [kN]	Utilization β_V [%]	Status
Steel failure (without lever arm)*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout failure*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

When the input edge distance is set to "infinity", edge breakout verification is not performed in that direction

5 Displacements (highest loaded anchor)

Short term loading:

N_{Sk}	=	20.741 [kN]	δ_{N}	=	0.1270 [mm]
\boldsymbol{V}_{Sk}	=	0.000 [kN]	δ_{V}	=	0.0000 [mm]
			$\boldsymbol{\delta}_{\text{NV}}$	=	0.1270 [mm]
Long t	erm	loading:			
N_{Sk}	=	20.741 [kN]	$\boldsymbol{\delta}_{N}$	=	0.2539 [mm]
\boldsymbol{V}_{Sk}	=	0.000 [kN]	δ_{V}	=	0.0000 [mm]
			δ_{NV}	=	0.2539 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the baseplate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

www.hilti.co.nz

 Company:
 Page:
 8

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-face fix
 Date:
 7/11/2024

 Fastening Point:
 typical face fixed bracket

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid baseplate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- For the determination of the ψ_{re,ν} (concrete edge failure) the minimum concrete cover defined in the design settings is used as the concrete cover of the edge reinforcement.
- Please note that this design utilizes user defined material safety factor values that differ from the default values recommended in EN1992-4.
 Partial Safety factor value: γ_c = 1.500
- Drilled hole cleaning must be performed according to instructions for use (blow twice with oil-free compressed air (min. 6 bar), brush twice, blow twice with oil-free compressed air (min. 6 bar)).
- Characteristic bond resistances depend on short- and long-term temperatures.
- · Edge reinforcement is not required to avoid splitting failure
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

www.hilti.co.nz

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: 24042-face fix Date: 7/11/2024

Fastening Point: typical face fixed bracket

7 Installation data

Baseplate, steel: S 235; E = 210,000.00 N/mm²; f_{vk} = 235.00 N/mm²

Profile: no profile

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$

Plate thickness (input): 8.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

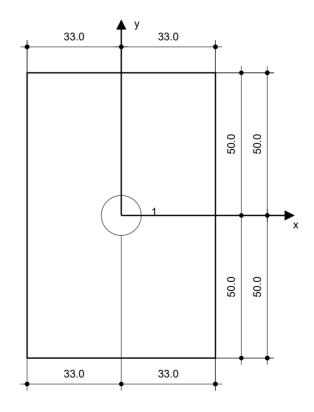
for use is required

Anchor type and size: HIT-HY 200-R V3 + HAS A4 M12 Item number: 2390264 HAS A4 M12x160 (insert) /

9

2262131 HIT-HY 200-R V3 (mortar) Maximum installation torque: 40 Nm

Hole diameter in the base material: 14.0 mm Hole depth in the base material: 130.0 mm


Minimum thickness of the base material: 160.0 mm

Hilti HAS-U A4 threaded rod with HIT-HY 200-R V3 injection mortar with 130 mm embedment hef, M12, Stainless steel, Hammer drilling installation per ETA 19/0601

7.1 Recommended accessories

Drilling Cleaning Setting

- · Suitable Rotary Hammer
- · Properly sized drill bit
- Compressed air with required accessories to blow from the bottom of the hole
- · Proper diameter wire brush
- · Dispenser including cassette and mixer
- For deep installations, a piston plug is necessary
- Torque wrench

Coordinates Anchor [mm]

Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}	
1	0.0	0.0	-	-	60.0	240.0	

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.co.nz

 Company:
 Page:
 10

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-face fix
 Date:
 7/11/2024

 Fastening Point:
 typical face fixed bracket
 10

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.co.nz

Company: Page: Address: Specifier: E-Mail: Phone I Fax:

24042-surface fix- plate lengthwise 7/11/2024 Design: Date:

Fastening Point:

Specifier's comments:

1 Input data

HIT-HY 200-R V3 + HAS A4 M12 Anchor type and size:

Return period (service life in years):

Item number: 2390264 HAS A4 M12x160 (insert) / 2262131

HIT-HY 200-R V3 (mortar)

Specification text: Hilti HAS-U A4 threaded rod with HIT-HY

200-R V3 injection mortar with 119 mm embedment hef, M12, Stainless steel, Hammer

drilling installation per ETA 19/0601

Effective embedment depth: $h_{ef.act} = 119.0 \text{ mm } (h_{ef.limit} = - \text{ mm})$

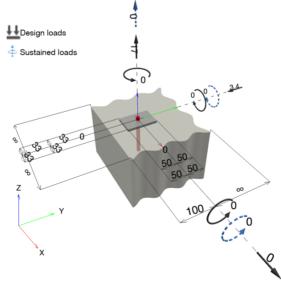
Material: A4

Approval No.: ETA 19/0601 Issued I Valid: 29/01/2024 | -

Proof: Design Method EN 1992-4, Chemical Stand-off installation: $e_h = 0.0 \text{ mm}$ (no stand-off); t = 8.0 mm

 $I_x \times I_y \times t = 66.0 \text{ mm} \times 100.0 \text{ mm} \times 8.0 \text{ mm}$; (Recommended plate thickness: not calculated) Baseplate^R:

Profile: no profile


Base material: cracked concrete, C25/30, $\rm f_{c,cyl}$ = 25.00 N/mm 2 ; h =200.0 mm, Temp. short/long: 40/24 °C, User-defined partial material safety factor γ_c = 1.500

Installation: Hammer drilled hole, Installation condition: Dry

No reinforcement or Reinforcement spacing >= 150 mm (any \emptyset) or >= 100 mm (\emptyset <= 10 mm) Reinforcement:

no longitudinal edge reinforcement

Geometry [mm] & Loading [kN, kNm]

^R - The anchor calculation is based on a rigid baseplate assumption.

www.hilti.co.nz

Company: Page: 2
Address: Specifier:

Phone I Fax: | E-Mail:
Design: 24042-surface fix- plate lengthwise Date:

Fastening Point:

1.1 Load combination

Ca	se Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
1	Combination 1	$N = 17.000; V_x = 0.000; V_y = -3.400;$ $M_x = 0.000; M_y = 0.000; M_z = 0.000;$	<u>no</u>	<u>no</u>	<u>100</u>
		N _{sus} = 0.000; M _{x,sus} = 0.000; M _{y,sus} = 0.000;			
2	Combinaation 2	N = 1.000; $V_x = 0.000$; $V_y = 0.000$; $M_x = 0.000$; $M_y = 0.000$; $M_z = 0.000$;	C1	no	8
		$N_{sus} = 0.000$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;			

2 Load case/Resulting anchor forces

Controlling load case: 1 Combination 1

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	17.000	3.400	0.000	-3.400

 $\label{eq:max_concrete} \begin{array}{ll} \text{Max. concrete compressive strain:} & \text{- } [\%] \\ \text{Max. concrete compressive stress:} & \text{- } [\text{N/mm}^2] \\ \text{Resulting tension force in } (\text{x/y}) = (0.0/0.0): & 17.000 \text{ [kN]} \\ \text{Resulting compression force in } (\text{x/y}) = (-/-): & 0.000 \text{ [kN]} \\ \end{array}$

1 Tension

7/11/2024

Anchor forces are calculated based on the assumption of a rigid baseplate.

www.hilti.co.nz

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: 24042-surface fix- plate lengthwise Date: 7/11/2024

Fastening Point:

3 Tension load (EN 1992-4, Section 7.2.1)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel failure*	17.000	31.556	54	OK
Combined pullout-concrete cone failure**	17.000	19.675	87	OK
Concrete Breakout failure**	17.000	22.563	76	OK
Splitting failure**	17.000	23.316	73	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

3.1 Steel failure

$$N_{\text{Ed}} \leq N_{\text{Rd,s}} = \frac{N_{\text{Rk,s}}}{\gamma_{\text{Ms}}}$$
 EN 1992-4, Table 7.1

$N_{Rk,s}$ [kN]	γ_{Ms}	$N_{Rd,s}$ [kN]	N _{Ed} [kN]	
59.010	1.870	31.556	17.000	

www.hilti.co.nz

 Company:
 Page:
 4

 Address:
 Specifier:
 Phone I Fax:
 E-Mail:

 Design:
 24042-surface fix- plate lengthwise
 Date:
 7/11/2024

 Fastening Point:
 7/11/2024

3.2 Combined pullout-concrete cone failure

$N_{\text{Ed}} \leq N_{\text{Ro}}$	$_{\rm d,p} = \frac{{\sf N}_{\sf Rk,p}}{\gamma_{\sf Mp}}$	EN 1992-4, Table 7.1
$\boldsymbol{N}_{Rk,p}$	$= N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{g,Np} \cdot \psi_{s,Np} \cdot \psi_{re,Np} \cdot \psi_{ec1,Np} \cdot \psi_{ec2,Np}$	EN 1992-4, Eq. (7.13)
$N_{Rk,p}^0$ Ψ_{sus}	$= \psi_{sus} \cdot \tau_{Rk} \cdot \pi \cdot d \cdot h_{ef}$ $= 1$	EN 1992-4, Eq. (7.14) EN 1992-4, Eq. (7.14a)
s _{cr,Np}	= 7.3 · d · $\sqrt{\psi_{sus} \cdot \tau_{Rk}} \leq 3 \cdot h_{ef}$	EN 1992-4, Eq. (7.15)
$\psi_{g,Np}$	$= \psi_{g,Np}^{0} - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^{0} - 1\right) \ge 1.00$	EN 1992-4, Eq. (7.17)
$\psi_{g,Np}^{0}$	$= \sqrt{n} - (\sqrt{n} - 1) \cdot \left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1.5} \ge 1.00$	EN 1992-4, Eq. (7.18)
$\tau_{\rm Rk,c}$	$= \frac{k_3}{\pi \cdot d} \cdot \sqrt{h_{ef} \cdot f_{ck}}$	EN 1992-4, Eq. (7.19)
$\psi_{\text{ s,Np}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}} \le 1.00$	EN 1992-4, Eq. (7.20)
Ψ ec1,Np	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c1,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)
$\Psi_{\text{ec2,Np}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c2,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)

$A_{p,N}$ [mm ²]	$A_{p,N}^0$ [mm ²]	$\tau_{Rk,ucr,20}$ [N/mm ²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]	f _{c,cyl} [N/mm ²]
99,424	127,449	18.00	357.0	178.5	100.0	25.00
Ψ c	$\tau_{Rk,cr} [N/mm^2]$	k_3	$\tau_{Rk,c}$ [N/mm ²]	$\psi^0_{g,Np}$	$\psi_{g,Np}$	_
1.023	9.71	7.700	11.14	1.000	1.000	
e _{c1,N} [mm]	$\Psi_{\text{ ec1,Np}}$	e _{c2,N} [mm]	$\psi_{\text{ ec2,Np}}$	$\psi_{\text{s,Np}}$	$\psi_{\text{re,Np}}$	_
0.0	1.000	0.0	1.000	0.868	1.000	
$\stackrel{0}{\psi}_{sus}^{o}$	α_{sus}	ψ_{sus}				
0.800	0.000	1.000				
$N_{Rk,p}^{0}$ [kN]	N _{Rk,p} [kN]	γ_{Mp}	N _{Rd,p} [kN]	N _{Ed} [kN]	_	
43.581	29.512	1.500	19.675	17.000		

Group anchor ID

www.hilti.co.nz

Company:		Page:	
Address:		Specifier:	· ·
Phone I Fax:	1	- E-Mail:	
Design:	24042-surface fix- plate lengthwise	Date:	7/11/2024
Fastening Point:	, ,		

3.3 Concrete Breakout failure

$N_{\text{Ed}} \leq N_{\text{Rd}}$	$_{\rm l,c} = \frac{N_{\rm Rk,c}}{\gamma_{\rm Mc}}$	EN 1992-4, Table 7.1
$N_{Rk,c}$	$= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{M,N}$	EN 1992-4, Eq. (7.1)
$N_{Rk,c}^0$	$= k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1,5}$	EN 1992-4, Eq. (7.2)
$A_{c,N}^0$	$= s_{cr,N} \cdot s_{cr,N}$	EN 1992-4, Eq. (7.3)
$N_{Rk,c}^0$ $A_{c,N}^0$ $\Psi_{s,N}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{cr,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ ec2,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{col}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{M,N}$	= 1	EN 1992-4, Eq. (7.7)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	f _{c,cyl} [N/mm ²]		
99,424	127,449	178.5	357.0	25.00		
e _{c1,N} [mm]	$\psi_{\text{ ec1,N}}$	e _{c2,N} [mm]	$\psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re},\text{N}}$	z [mm]
0.0	1.000	0.0	1.000	0.868	1.000	0.0
$\Psi_{M,N}$	\mathbf{k}_{1}	$N_{Rk,c}^0$ [kN]	γ_{Mc}	N _{Rd,c} [kN]	N _{Ed} [kN]	
1.000	7.700	49.978	1.500	22.563	17.000	-

Group anchor ID

www.hilti.co.nz

 Company:
 Page:
 6

 Address:
 Specifier:
 5

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-surface fix- plate lengthwise
 Date:
 7/11/2024

 Fastening Point:
 7/11/2024

3.4 Splitting failure

$N_{\text{Ed}} \leq N_{\text{Rd},}$	$_{\rm sp} = \frac{{\sf N}_{\sf Rk,sp}}{\gamma_{\sf Msp}}$	EN 1992-4, Table 7.1
$N_{Rk,sp}$	$= N_{Rk,sp}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{h,sp}$	EN 1992-4, Eq. (7.23)
$egin{aligned} & N_{Rk,sp}^0 \ & A_{c,N}^0 \end{aligned}$	$= \min \left(N_{Rk,p}^0, N_{Rk,c}^0 \right)$	
$A_{c,N}^0$	$= s_{cr,sp} \cdot s_{cr,sp}$	EN 1992-4, Eq. (7.3)
$\psi_{\text{ s,N}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,sp}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,1}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\Psi_{\text{ ec2,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{s_{cr,sp}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ h,sp}}$	$= \left(\frac{h}{h_{min}}\right)^{2/3} \le \max\left\{1; \left(\frac{h_{ef} + 1.5 \cdot c_1}{h_{min}}\right)^{2/3}\right\} \le 2.00$	EN 1992-4, Eq. (7.24)

$A_{c,N}$ [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,sp} [mm]	s _{cr,sp} [mm]	h _{min} [mm]	$\psi_{\text{ h,sp}}$	f _{c,cyl} [N/mm ²]
107,718	140,475	187.4	374.8	149.0	1.217	25.00
e _{c1,N} [mm]	$\Psi_{\text{ ec1,N}}$	e _{c2,N} [mm]	$\Psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re},N}$	k ₁
0.0	1.000	0.0	1.000	0.860	1.000	7.700
$N_{Rk,sp}^0$ [kN]	γ_{Msp}	N _{Rd,sp} [kN]	N _{Ed} [kN]			
43.581	1.500	23.316	17.000			

Group anchor ID

www.hilti.co.nz

 Company:
 Page:
 7

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-surface fix- plate lengthwise
 Date:
 7/11/2024

Design: 24042-surface fix- plate lengthwise Date: //11/20
Fastening Point:

4 Shear load (EN 1992-4, Section 7.2.2)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel failure (without lever arm)*	3.400	18.913	18	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout failure**	3.400	39.350	9	OK
Concrete edge failure in direction y-**	3.400	10.160	34	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

When the input edge distance is set to "infinity", edge breakout verification is not performed in that direction

4.1 Steel failure (without lever arm)

$$V_{Ed} \le V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{Ms}}$$
 EN 1992-4, Table 7.2
$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0$$
 EN 1992-4, Eq. (7.35)

V _F	⁰ _{Rk,s} [kN]	k ₇	V _{Rk,s} [kN]	γ_{Ms}	V _{Rd,s} [kN]	V _{Ed} [kN]
2	9.505	1.000	29.505	1.560	18.913	3.400

www.hilti.co.nz

 Company:
 Page:
 8

 Address:
 Specifier:
 Phone I Fax:
 E-Mail:

 Design:
 24042-surface fix- plate lengthwise
 Date:
 7/11/2024

 Fastening Point:
 7/11/2024

4.2 Pryout failure (bond relevant)

$V_{Ed} \leq V_{Rd,}$	$_{\rm cp} = \frac{V_{\rm Rk,cp}}{\gamma_{\rm Mc p}}$	EN 1992-4, Table 7.2
$V_{Rk,cp}$	$= k_8 \cdot \min \{N_{Rk,c}, N_{Rk,p}\}$	EN 1992-4, Eq. (7.39c)
$N_{Rk,p}$	$= N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{g,Np} \cdot \psi_{s,Np} \cdot \psi_{re,Np} \cdot \psi_{ec1,Np} \cdot \psi_{ec2,Np}$	EN 1992-4, Eq. (7.13)
$N_{Rk,p}^0$	$= \psi_{sus} \cdot \tau_{Rk} \cdot \pi \cdot d \cdot h_{ef}$	EN 1992-4, Eq. (7.14)
ψ_{sus}	= 1	EN 1992-4, Eq. (7.14a)
$\mathbf{s}_{\mathrm{cr,Np}}$	$= 7.3 \cdot d \cdot \sqrt{\psi_{\text{sus}} \cdot \tau_{\text{Rk}}} \leq 3 \cdot h_{\text{ef}}$	EN 1992-4, Eq. (7.15)
$\psi_{g,Np}$	$= \psi_{g,Np}^{0} - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^{0} - 1\right) \ge 1.00$	EN 1992-4, Eq. (7.17)
$\psi_{g,Np}^{0}$	$=\sqrt{n}-(\sqrt{n}-1)\cdot\left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1,5}\geq 1.00$	EN 1992-4, Eq. (7.18)
$\tau_{\rm Rk,c}$	$= \frac{k_3}{\pi \cdot d} \cdot \sqrt{h_{ef} \cdot f_{ck}}$	EN 1992-4, Eq. (7.19)
$\psi_{\text{ s,Np}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}} \le 1.00$	EN 1992-4, Eq. (7.20)
$\Psi_{\text{ ec1,Np}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c1,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)
$\Psi_{\text{ ec2,Np}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c2,N}}{s_{cr,Np}}\right)} \le 1.00$	EN 1992-4, Eq. (7.21)

$A_{p,N}$ [mm ²]	$A_{p,N}^0$ [mm ²]	$\tau_{Rk,ucr,20}$ [N/mm ²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]	f _{c,cyl} [N/mm ²]
99,424	127,449	18.00	357.0	178.5	100.0	25.00
Ψς	$\tau_{Rk,cr} [N/mm^2]$	k ₃	$\tau_{Rk,c} [N/mm^2]$	k ₈	$\psi^0_{g,Np}$	_
1.023	9.71	7.700	11.14	2.000	1.000	
$\Psi_{g,Np}$	e _{c1,V} [mm]	$\psi_{\text{ ec1,Np}}$	e _{c2,V} [mm]	$\psi_{\text{ ec2,Np}}$	$\psi_{\text{s,Np}}$	_
1.000	0.0	1.000	0.0	1.000	0.868	
$\Psi_{\text{re,Np}}$	ψ_{sus}^{0}	$\alpha_{\sf sus}$	ψ_{sus}			
1.000	0.800	0.000	1.000			
$N_{Rk,p}^0$ [kN]	$N_{Rk,p}$ [kN]	$\gamma_{Mc,p}$	V _{Rd,cp} [kN]	V _{Ed} [kN]	_	
43.581	29.512	1.500	39.350	3.400		

Group anchor ID

www.hilti.co.nz

Company:		Page:	9
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	24042-surface fix- plate lengthwise	Date:	7/11/2024
Fastening Point:			

I.3 Conc	rete edge f	ailure in direction y	-						
$V_{Ed} \leq V_{R}$	$_{Rd,c} = \frac{V_{Rk,c}}{\gamma_{Mc}}$			EN 1992-4	1, Table 7.2				
$V_{Rk,c}$	$= k_T \cdot V_F^0$	$\frac{A_{c,V}}{A_{c,V}^0} \cdot \frac{A_{c,V}}{A_{c,V}^0} \cdot \psi_{s,V} \cdot \psi_{h,V}$	$\cdot \ \psi_{\alpha,V} \cdot \psi_{ec,V} \cdot \psi_{re,V}$, EN 1992-4	1, Eq. (7.40)				
$V_{Rk,c}^0$	$= k_9 \cdot d_{ne}^{\alpha}$	$_{\text{om}} \cdot I_{\text{f}}^{\beta} \cdot \sqrt{f_{\text{ck}}} \cdot c_{1}^{1,5}$			1, Eq. (7.41)				
χ	= 0.1 · ($\left(\frac{l_f}{c_1}\right)^{0.5}$		EN 1992-4	1, Eq. (7.42)				
3	= 0.1 · ($\left(\frac{d_{\text{nom}}}{C_4}\right)^{0,2}$		EN 1992-4	4, Eq. (7.43)				
$\lambda_{c,V}^0$	= 4.5 · c			EN 1992-4	1, Eq. (7.44)				
Ψ _{s,V}	= 0.7 + 0	$0.3 \cdot \frac{c_2}{1.5 \cdot c_1} \le 1.00$		EN 1992-4	EN 1992-4, Eq. (7.45)				
ψ _{h,V}	$=\left(\frac{1.5 \cdot c_1}{h}\right)^{0.5} \ge 1.00$			EN 1992-4	EN 1992-4, Eq. (7.46)				
γ _{ec,V}	$=\frac{1}{1+\left(\frac{2\cdot e_{V}}{3\cdot c_{A}}\right)}\leq 1.00$			EN 1992-4	EN 1992-4, Eq. (7.47)				
γ _{α,V}	$=\sqrt{\frac{1}{(co)}}$	$\frac{1}{(0.5 \cdot \sin \alpha_{\rm V})^2 + (0.5 \cdot \sin \alpha_{\rm V})}$	$\frac{-}{2} \ge 1.00$	EN 1992-4	1, Eq. (7.48)				
I _f [ı	mm]	d _{nom} [mm]	k_9	α	β	f _{c,cyl} [N/mm ²]	c ₁ [mm]		
11	19.0	12.00	1.700	0.109	0.065	25.00	100.0		
$A_{c,V}$	[mm ²]	$A_{c,V}^0$ [mm ²]	$\Psi_{s,V}$	$\psi_{\text{h,V}}$	e _{c,V} [mm]	$\psi_{\text{ ec,V}}$			
	,000	45,000	1.000	1.000	0.0	1.000			
α	_v [°]	$\psi_{\alpha,V}$	$\psi_{re,V}$						
0	.00	1.000	1.000	_					
V_{Rk}^0	,c [kN]	\mathbf{k}_{T}	γ_{Mc}	V _{Rd,c} [kN]	V _{Ed} [kN]				
	.239	1.0	1.500	10.160	3.400	_			
Group	anchor ID								

Group anchor ID

When the input edge distance is set to "infinity", edge breakout verification is not performed in that direction

www.hilti.co.nz

Company: Page: 10
Address: Specifier:
Phone I Fax: | E-Mail:
Design: 24042-surface fix- plate lengthwise Date: 7/11/2024
Fastening Point:

5 Combined tension and shear loads (EN 1992-4, Section 7.2.3)

Steel failure

β_{N}	β_{V}	α	Utilization $\beta_{N,V}$ [%]	Status	
0.539	0.180	2.000	33	OK	

$$\beta_N^{\alpha}$$
 + $\beta_V^{\alpha} \le 1.0$

Concrete failure

β_{N}	β_{V}	α	Utilization $\beta_{N,V}$ [%]	Status	
0.864	0.335	1.500	100	OK	

$$\beta_N^{\alpha} + \beta_V^{\alpha} \le 1.0$$

6 Displacements (highest loaded anchor)

Short term loading:

 N_{Sk} 12.593 [kN] 0.1965 [mm] 2.519 [kN] 0.1259 [mm] $V_{\rm Sk}$ δ_V 0.2334 [mm] Long term loading: 12.593 [kN] 0.4491 [mm] δ_{V} V_{Sk} 2.519 [kN] 0.2015 [mm] 0.4922 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the baseplate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

www.hilti.co.nz

Company:		Page:	11
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	24042-surface fix- plate lengthwise	Date:	7/11/2024
Fastening Point:			

7 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid baseplate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- For the determination of the ψ_{re,ν} (concrete edge failure) the minimum concrete cover defined in the design settings is used as the concrete cover of the edge reinforcement.
- Please note that this design utilizes user defined material safety factor values that differ from the default values recommended in EN1992-4. Partial Safety factor value: γ_c = 1.500
- Drilled hole cleaning must be performed according to instructions for use (blow twice with oil-free compressed air (min. 6 bar), brush twice, blow twice with oil-free compressed air (min. 6 bar)).
- Characteristic bond resistances depend on short- and long-term temperatures.
- · Edge reinforcement is not required to avoid splitting failure
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

www.hilti.co.nz

 Company:
 Page:
 12

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 24042-surface fix- plate lengthwise
 Date:
 7/11/2024

 Fastening Point:
 7/11/2024

8 Installation data

Baseplate, steel: S 235; E = 210,000.00 N/mm²; f_{vk} = 235.00 N/mm²

Profile: no profile

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$

Plate thickness (input): 8.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

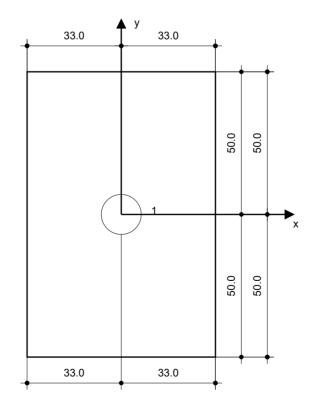
Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

Anchor type and size: HIT-HY 200-R V3 + HAS A4 M12 Item number: 2390264 HAS A4 M12x160 (insert) /

2262131 HIT-HY 200-R V3 (mortar) Maximum installation torque: 40 Nm

Hole diameter in the base material: 14.0 mm Hole depth in the base material: 119.0 mm


Minimum thickness of the base material: 149.0 mm

Hilti HAS-U A4 threaded rod with HIT-HY 200-R V3 injection mortar with 119 mm embedment hef, M12, Stainless steel, Hammer drilling installation per ETA 19/0601

8.1 Recommended accessories

Drilling Cleaning Setting

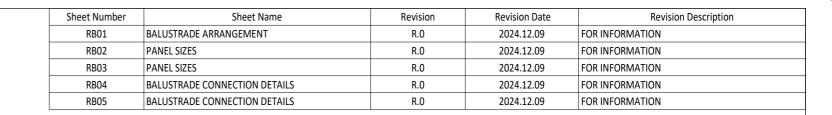
- Suitable Rotary Hammer
- · Properly sized drill bit
- Compressed air with required accessories to blow from the bottom of the hole
- · Proper diameter wire brush
- · Dispenser including cassette and mixer
- For deep installations, a piston plug is necessary
- Torque wrench

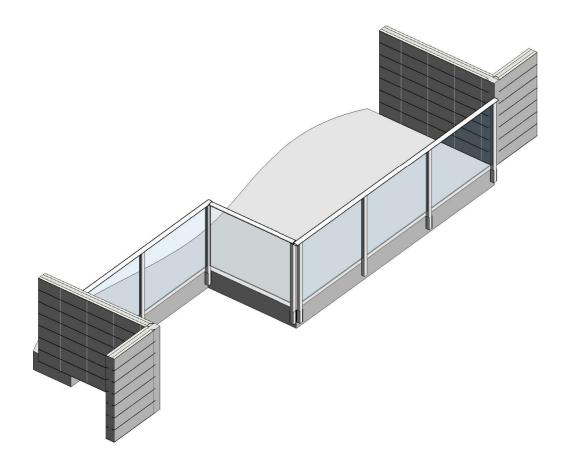
Coordinates Anchor [mm]

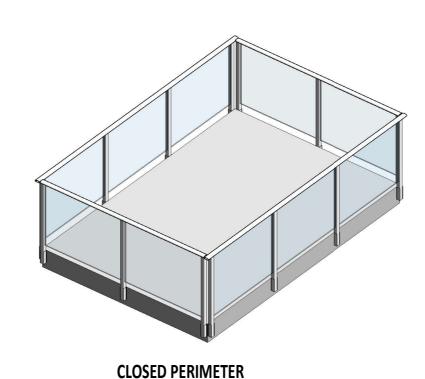
Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}
1	0.0	0.0	-	-	100.0	-

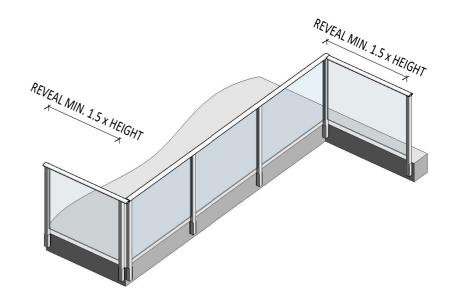
www.	hi	lti	co	n7
www.	ш	ıu.	CO.	.IIZ

Company:		Page:	13
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	24042-surface fix- plate lengthwise	Date:	7/11/2024
Fastening Point:			


9 Remarks; Your Cooperation Duties


- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for
 the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do
 not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software
 in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.


APPENDIX C

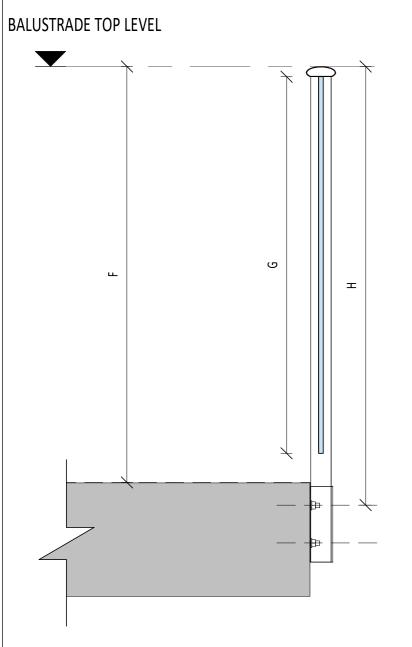

Lateral Mounted Design Drawings and Details

CONTINUOUS BALUSTRADE LINE BETWEEN STRUCTURES

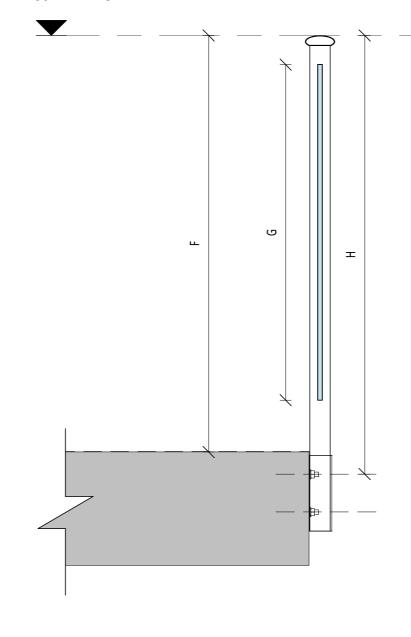
BALUSTRADE / POOL FENCE ARRANGEMENT HAS TO BE CONSISTENT WITH ONE OR COMBINATION OF THE PRESENTED ARRANGEMENTS TO MEET THE LOAD ASSUMPTIONS

www.extra-mile.co.nz, info@extra-mile.co.nz

FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT



Napier. 4110


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 1 - BALUSTRADE WITH HANDRAIL
- LATERAL MOUNTED

Drawing:
BALUSTRADE ARRANGEMENT

REF.	DESCRIPTION					DA	ΓΕ
R.0	FOR INFORMA	TION				2024.1	2.09
scale: @A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RB01	rev:	R.0

BALUSTRADE TOP LEVEL

STYLE B1 - GAP AT TOP OF GLASS MODEL -50mm

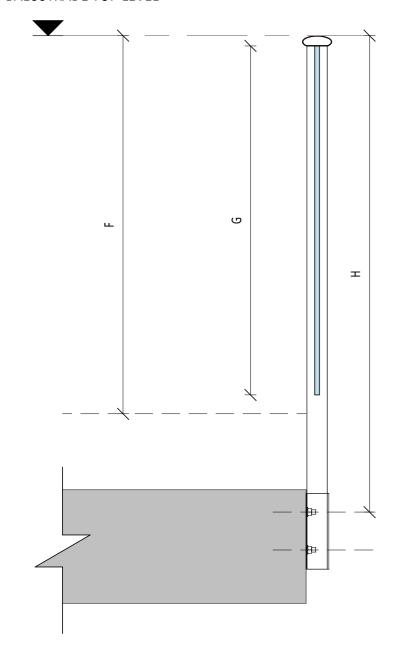
1:10

STYLE A1 - GLASS INTO HANDRAIL MODEL

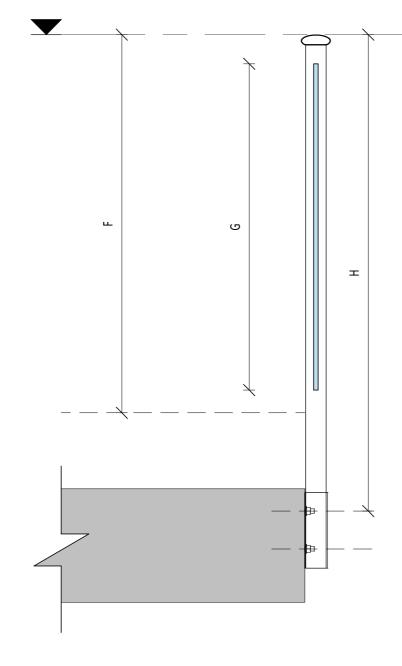
1:10

BALUSTRADE CONFIGURATIONS HEIGHT **POST** WIND **MODEL** MAX GLASS FFL (F) SPACING (S) **OCCUPANCY FROM** HEIGHT (G) TYPE ZONE FIXING (H) mm A, C3, B, E M 1160 1100 1023 1950 A, C3, B, E Н 1160 1100 1023 1950 STYLE A1 1950 A, C3, B, E VH 1160 1100 1023 A, C3, B, E EΗ 1160 1100 1023 1950 A, C3, B, E M 1160 1100 963 1950 A, C3, B, E Н 1160 1100 963 1950 STYLE B1 A, C3, B, E VH 1160 1100 963 1950 A, C3, B, E EΗ 1160 1100 963 1900

GLASS NOTES:


12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 1 - BALUSTRADE WITH HANDRAIL
- LATERAL MOUNTED


EF.	DESCRIPTION					DATI	Ē
.0	FOR INFORMA	OR INFORMATION					
cale: s indicated@A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RB02	rev:	R.0

BALUSTRADE TOP LEVEL

 $\frac{\textbf{STYLE C1 - FLOATING DECK GLASS INTO HANDRAIL}}{ \underbrace{\textbf{MODEL}}_{1:10}}$

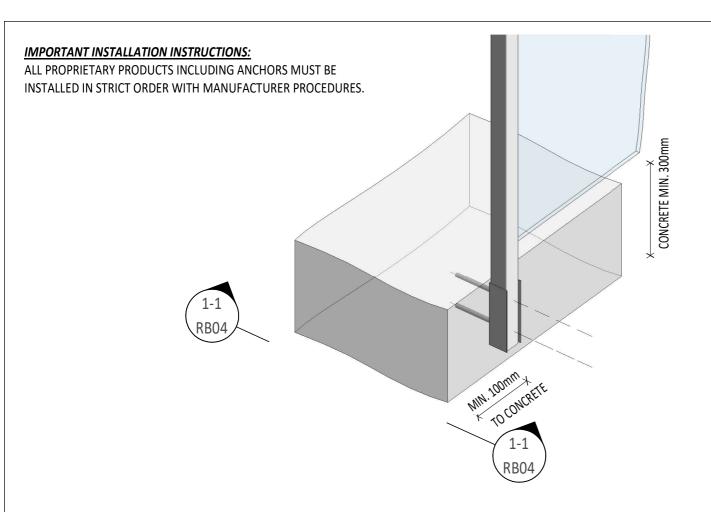
BALUSTRADE TOP LEVEL

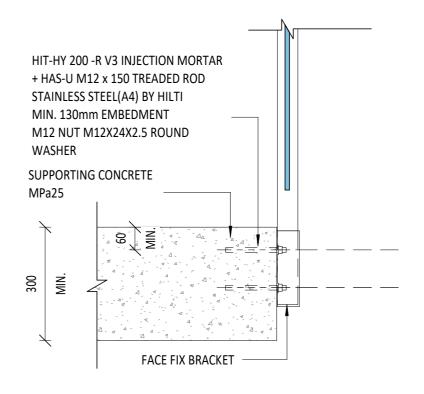
STYLE D1 - FLOATING DECK GAP AT TOP OF GLASS

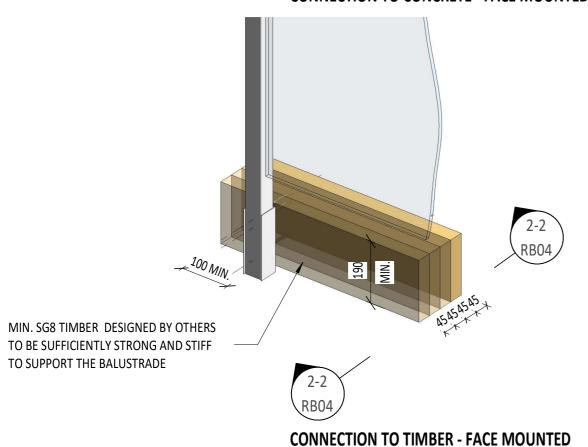
MODEL-50mm

1:10

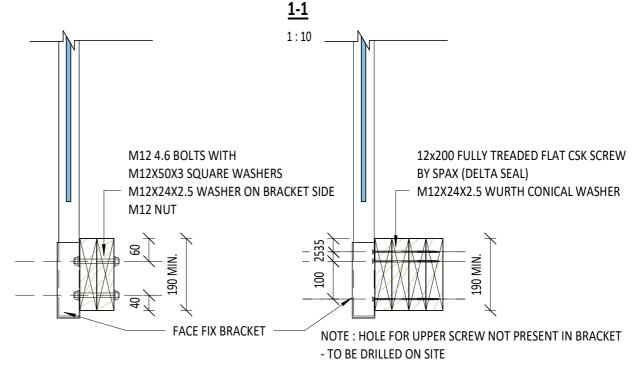
	BALUSTRADE CONFIGURATIONS - FLOATING DECK								
MODEL TYPE	OCCUPANCY	WIND ZONE	HEIGHT FROM FIXING (H)	FFL (F)	MAX GLASS HEIGHT (G)	POST SPACING (S) mm			
	A, C3, B, E	М	1260	1000	923	1950			
STYLE C1	A, C3, B, E	Н	1260	1000	923	1950			
STILL CI	A, C3, B, E	VH	1260	1000	923	1950			
	A, C3, B, E	EH	1260	1000	923	1800			
	A, C3, B, E	М	1260	1000	863	1950			
STYLE D1	A, C3, B, E	Н	1260	1000	863	1950			
	A, C3, B, E	VH	1260	1000	863	1950			
	A, C3, B, E	EH	1260	1000	863	1750			


GLASS NOTES:


12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 1 - BALUSTRADE WITH HANDRAIL
- LATERAL MOUNTED

REF.	DESCRIPTION					DAT	ſΕ		
R.0	FOR INFORMA	INFORMATION							
scale: As indicated@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB03	rev:	R.0		



CONNECTION TO CONCRETE - FACE MOUNTED

www.extra-mile.co.nz, info@extra-mile.co.nz

TIMBER OPTION 1

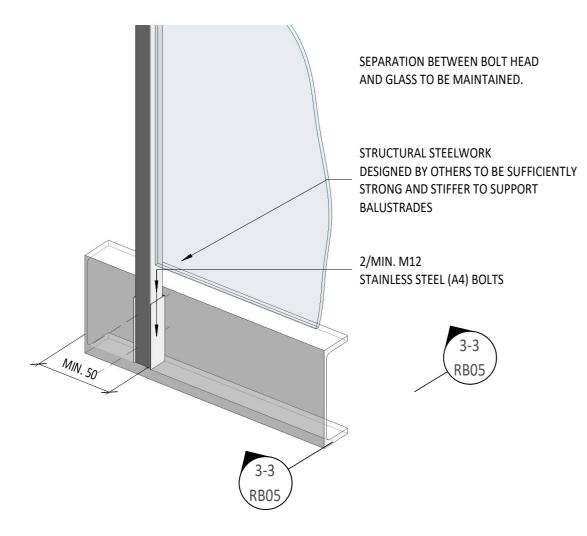
TIMBER OPTION 2

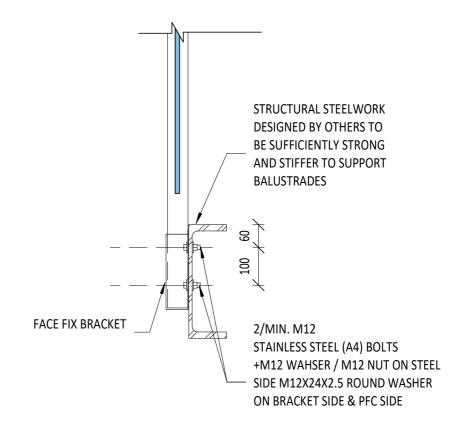
NOTE: ONLY OPTION 1 SUITABLE FOR WET TIMBER

<u>2-2</u>

1:10

Napier. 4110


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 1 - BALUSTRADE WITH HANDRAIL
- LATERAL MOUNTED


Drawing:
BALUSTRADE CONNECTION
DETAILS

REF.	DESCRIPTION					DA	TE
R.0	FOR INFORMA	TION				2024.	12.09
scale: 1:10@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB04	rev:	R.0

IMPORTANT INSTALLATION INSTRUCTIONS:

ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.

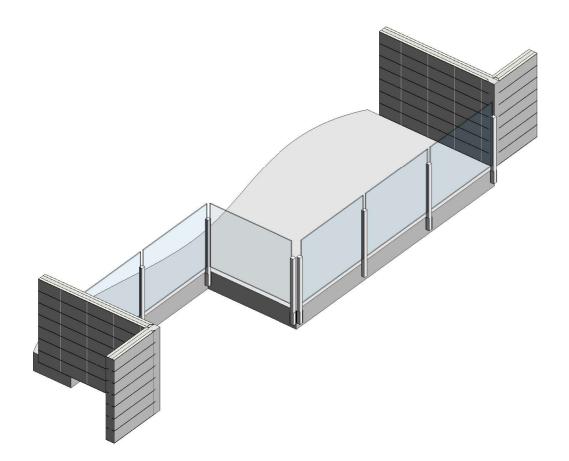
CONNECTION TO STRUCTURAL STEEL - FACE MOUNTED

<u>3-3</u>

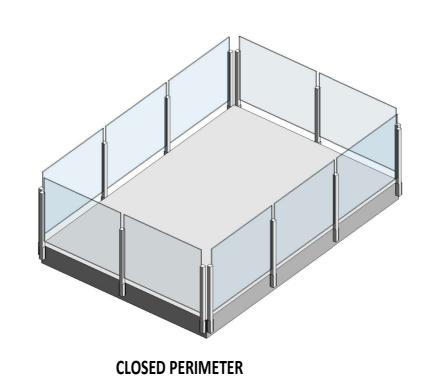
1:10

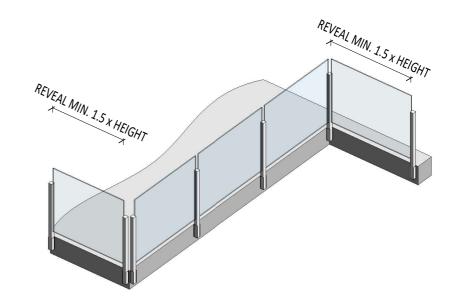
=XIRA consultin	g structural engineers
7 Market Street	m. 0210398833, m.0211099712

www.extra-mile.co.nz, info@extra-mile.co.nz


Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 1 - BALUSTRADE WITH HANDRAIL
- LATERAL MOUNTED

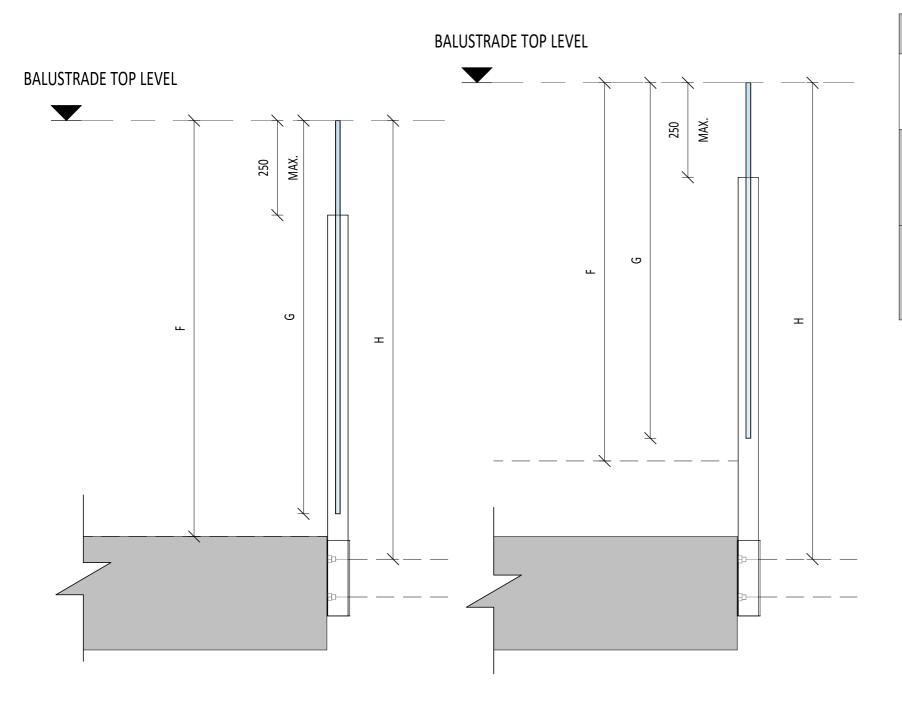

Drawing:
BALUSTRADE CONNECTION
DETAILS


REF.	DESCRIPTION					DA	TE	
R.0	FOR INFORMA	TION				2024.12.09		
scale: 1:10@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB05	rev:	R.0	

Sheet Number	Sheet Name	Revision	Revision Date	Revision Description
RB01	BALUSTRADE ARRANGEMENT	R.0	2024.12.09	FOR INFORMATION
RB02	PANEL SIZES	R.0	2024.12.09	FOR INFORMATION
RB03	BALUSTRADE CONNECTION DETAILS	R.0	2024.12.09	FOR INFORMATION
RB04	BALUSTRADE CONNECTION DETAILS	R.0	2024.12.09	FOR INFORMATION

CONTINUOUS BALUSTRADE LINE BETWEEN STRUCTURES

BALUSTRADE / POOL FENCE ARRANGEMENT HAS TO BE CONSISTENT WITH ONE OR COMBINATION OF THE PRESENTED ARRANGEMENTS TO MEET THE LOAD ASSUMPTIONS


FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 2 - BALUSTRADE WITH NO
HANDRAIL
- LATERAL MOUNTED

Drawing: BALUSTRADE ARRANGEMENT

REF.	DESCRIPTION					DA	TE			
R.0	FOR INFORMA	OR INFORMATION								
scale: @A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB01	rev:	R.0			

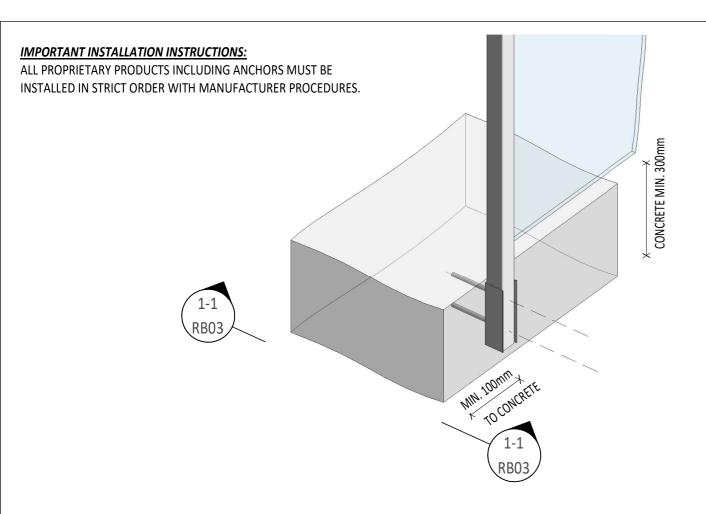
BALUSTRADE CONFIGURATIONS HEIGHT MODEL WIND MAX GLASS POST SPACING FFL (F) **OCCUPANCY FROM** HEIGHT (G) TYPE ZONE mm FIXING (H) A, C3, B, E M 1160 1100 1040 1550 A, C3, B, E Н 1160 1100 1040 1550 STYLE E1 A, C3, B, E VH 1160 1100 1040 1550 A, C3, B, E EΗ 1160 1100 1040 1550 A, C3, B, E M 1260 1000 940 1450 A, C3, B, E Н 1260 1000 940 1450 STYLE F1 A, C3, B, E VH 1260 1000 940 1450 A, C3, B, E EΗ 1260 1000 940 1450

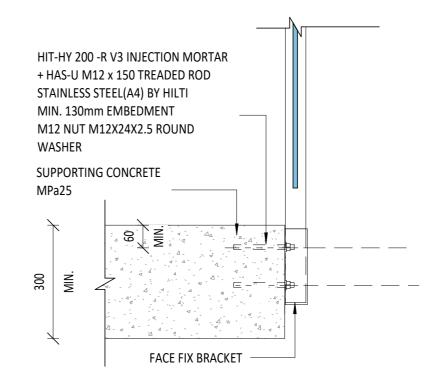
STYLE E1 - GLASS ABOVE POST MODEL

1:10

STYLE F1 - FLOATING DECK GLASS ABOVE POST

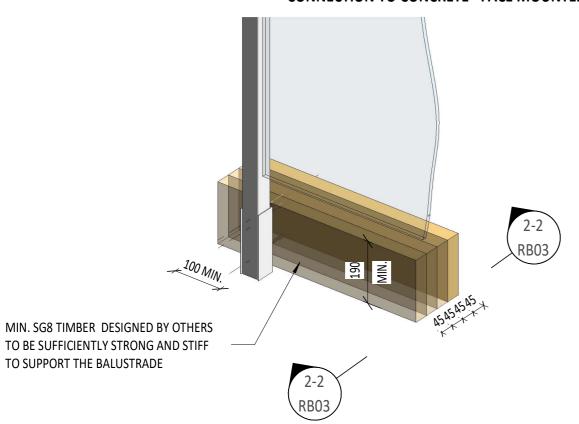
MODEL
1:10

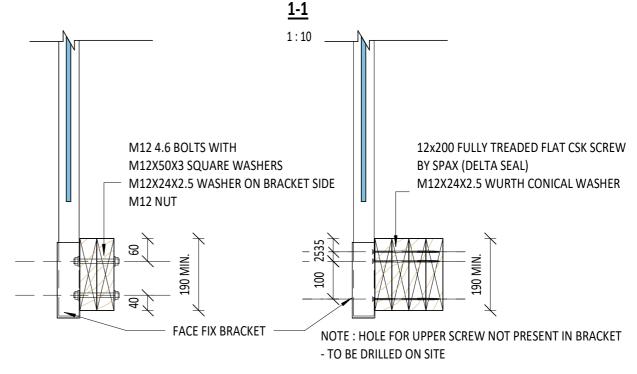

GLASS NOTES:


12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 2 - BALUSTRADE WITH NO
HANDRAIL
- LATERAL MOUNTED

REF.	DESCRIPTION					D	ATE
R.0	FOR INFORMA	ATION				2024	1.12.09
scale: As indicated@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB02	rev:	R.0





CONNECTION TO CONCRETE - FACE MOUNTED

CONNECTION TO TIMBER - FACE MOUNTED

www.extra-mile.co.nz, info@extra-mile.co.nz

TIMBER OPTION 1

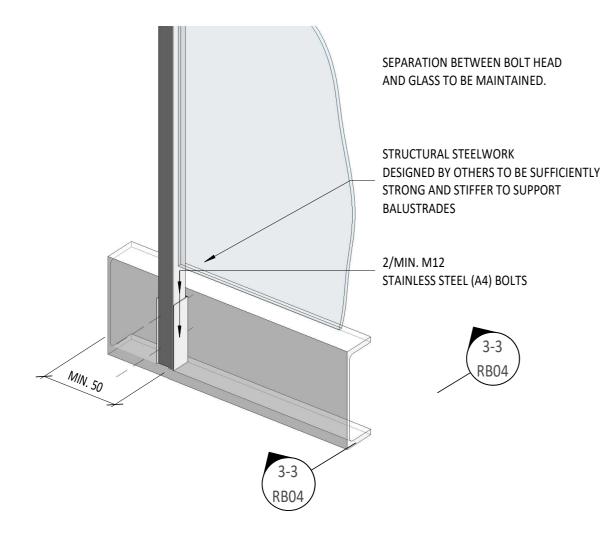
TIMBER OPTION 2

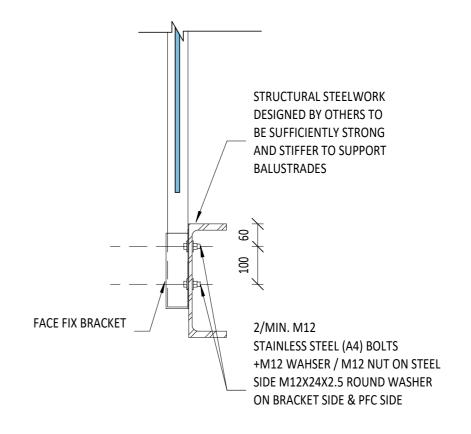
NOTE: ONLY OPTION 1 SUITABLE FOR WET TIMBER

<u>2-2</u>

1:10

Napier. 4110


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 2 - BALUSTRADE WITH NO
HANDRAIL
- LATERAL MOUNTED


Drawing:
BALUSTRADE CONNECTION
DETAILS

REF.	DESCRIPT	TION						D	ATE
R.0	FOR INFO	ORMA	TION					2024	1.12.09
scale: 1:10@A3	drawn:	SN	checked:	tatus:	-	project no: 24042	drg no: RB03	rev:	R.0

IMPORTANT INSTALLATION INSTRUCTIONS:

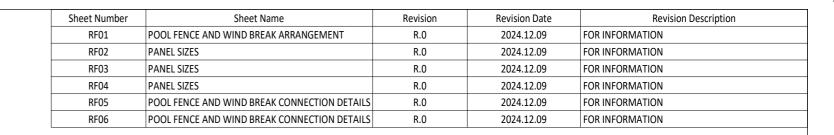
ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.

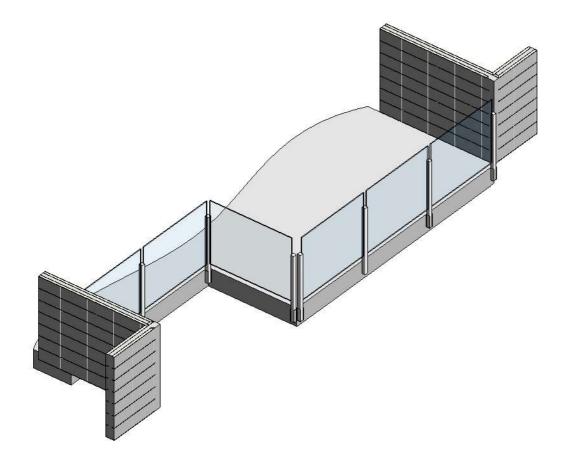
CONNECTION TO STRUCTURAL STEEL - FACE MOUNTED

<u>3-3</u>

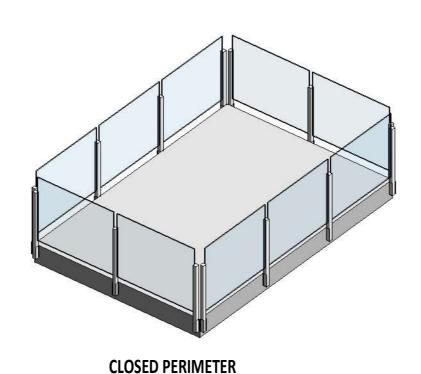
1:10

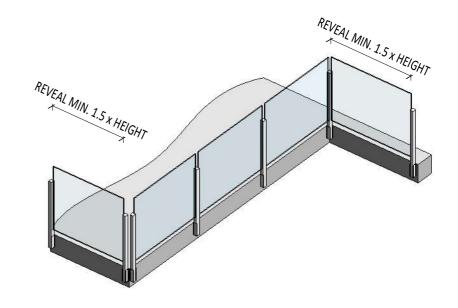
=XTRA consultin	g structural engineers
7 Market Street	m. 0210398833, m.0211099712


Napier. 4110


www.extra-mile.co.nz, info@extra-mile.co.nz

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 2 - BALUSTRADE WITH NO
HANDRAIL
- LATERAL MOUNTED


Drawing:
BALUSTRADE CONNECTION
DETAILS

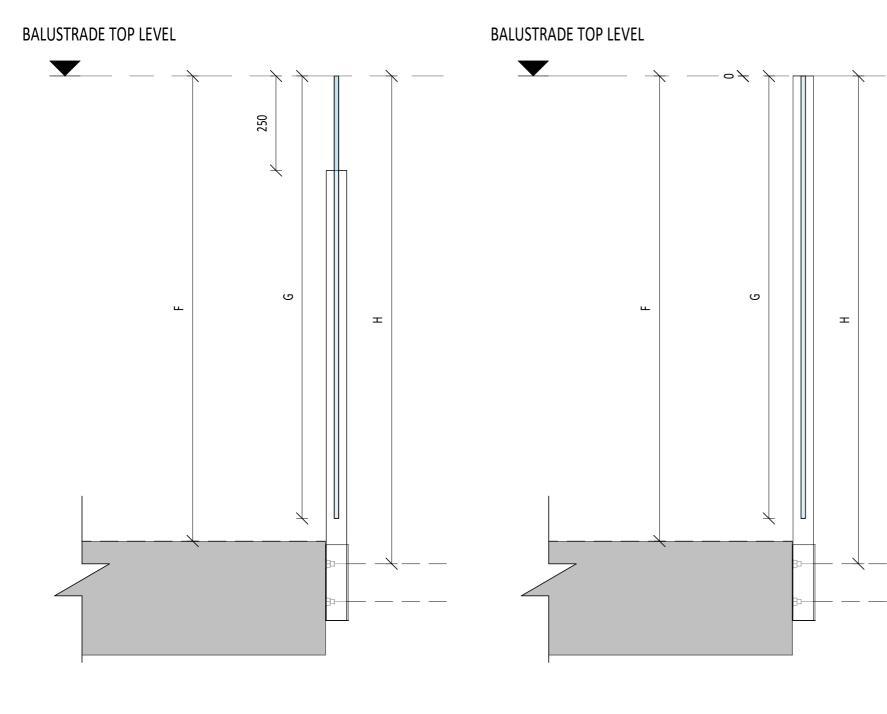

REF.	DESCRIPTION					DAT	E
R.0	FOR INFORMA	TION				2024.1	2.09
scale: 1:10@A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RB04	rev:	R.0

CONTINUOUS BALUSTRADE LINE BETWEEN STRUCTURES

BALUSTRADE / POOL FENCE ARRANGEMENT HAS TO BE CONSISTENT WITH ONE OR COMBINATION OF THE PRESENTED ARRANGEMENTS TO MEET THE LOAD ASSUMPTIONS

www.extra-mile.co.nz, info@extra-mile.co.nz

FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT



Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 3 - POOL FENCE AND WIND
BREAK, NO HANDRAIL
- LATERAL MOUNTED

Drawing:
POOL FENCE AND WIND BREAK
ARRANGEMENT

REF.	DESCRIPTION					DA	TE
R.0	FOR INFORMA	TION				2024.	12.09
scale: @A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RF01	rev:	R.0

POOL FENCE CONFIGURATIONS HEIGHT **POST** MODEL **MAX GLASS** WIND **OCCUPANCY SPACING FROM** FFL (F) **HEIGHT (G)** TYPE ZONE FIXING (H) mm Μ 1230 A, C3, B, E 1290 1170 1950 A, C3, B, E Н 1290 1230 1170 1950 STYLE G1 A, C3, B, E VH 1290 1230 1170 1950 EΗ 1230 1750 A, C3, B, E 1290 1170 М 1230 1168 1950 A, C3, B, E 1290 1168 1950 A, C3, B, E Η 1290 1230 STYLE H1 A, C3, B, E VH 1290 1230 1168 1950 1230 A, C3, B, E EΗ 1290 1168 1750

STYLE G1 - GLASS ABOVE POST MODEL

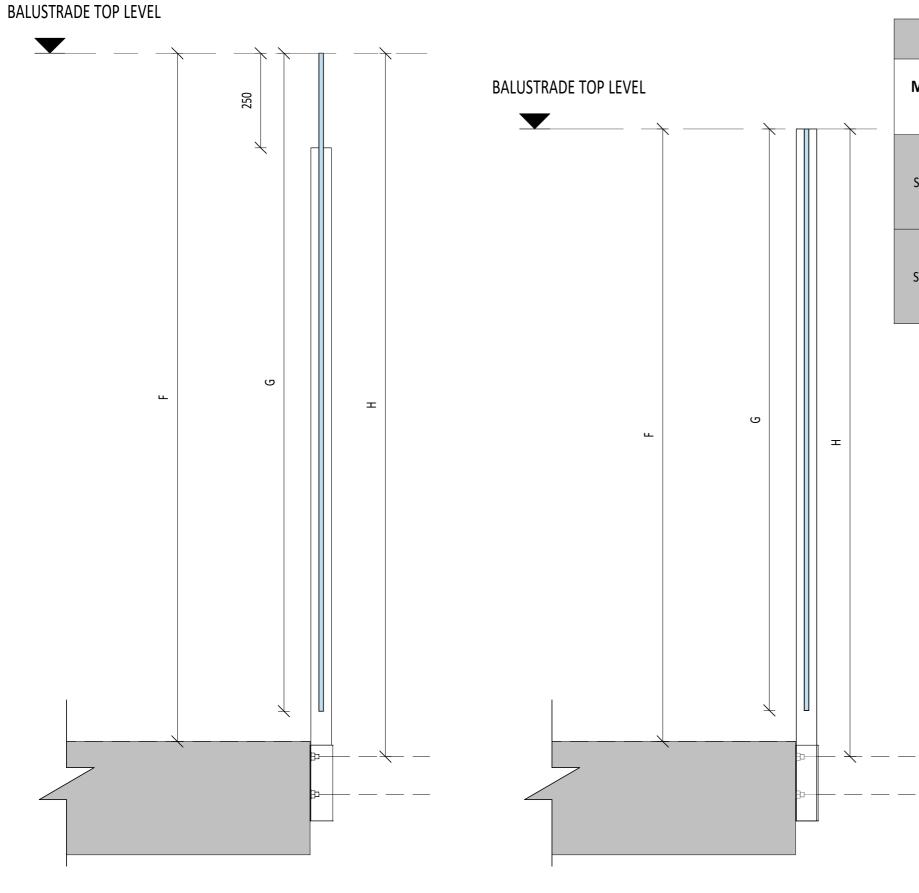
1:10

STYLE H1 - POST CAP MODEL

1:10

GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.



www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 3 - POOL FENCE AND WIND
BREAK, NO HANDRAIL
- LATERAL MOUNTED

REF.	DESCRIPTION								
R.0	FOR INFORM	R INFORMATION							
scale: As indicated@A3	drawn:	checked:	status:	project no: - 24042	drg no:	rev:	R.0		

WIND BREAKER CONFIGURATIONS HEIGHT **POST** MODEL **MAX GLASS** WIND **OCCUPANCY FROM** FFL (F) **SPACING TYPE** HEIGHT (G) ZONE FIXING (H) mm A, C3, B, E M 1660 1600 1540 1950 A, C3, B, E Н 1660 1600 1540 1650 STYLE I1 A, C3, B, E VH 1660 1600 1540 1350 A, C3, B, E EΗ 1600 1540 1050 1660 A, C3, B, E Μ 1660 1600 1538 1950 Н 1660 1600 1538 1650 A, C3, B, E STYLE J1 A, C3, B, E VH 1660 1600 1538 1350 A, C3, B, E EΗ 1660 1600 1538 1050

STYLE I1 - GLASS ABOVE POST MODEL 1600

<u>STYLE J1 - POST CAP MODEL 1600</u> 1:10 12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

GLASS NOTES:

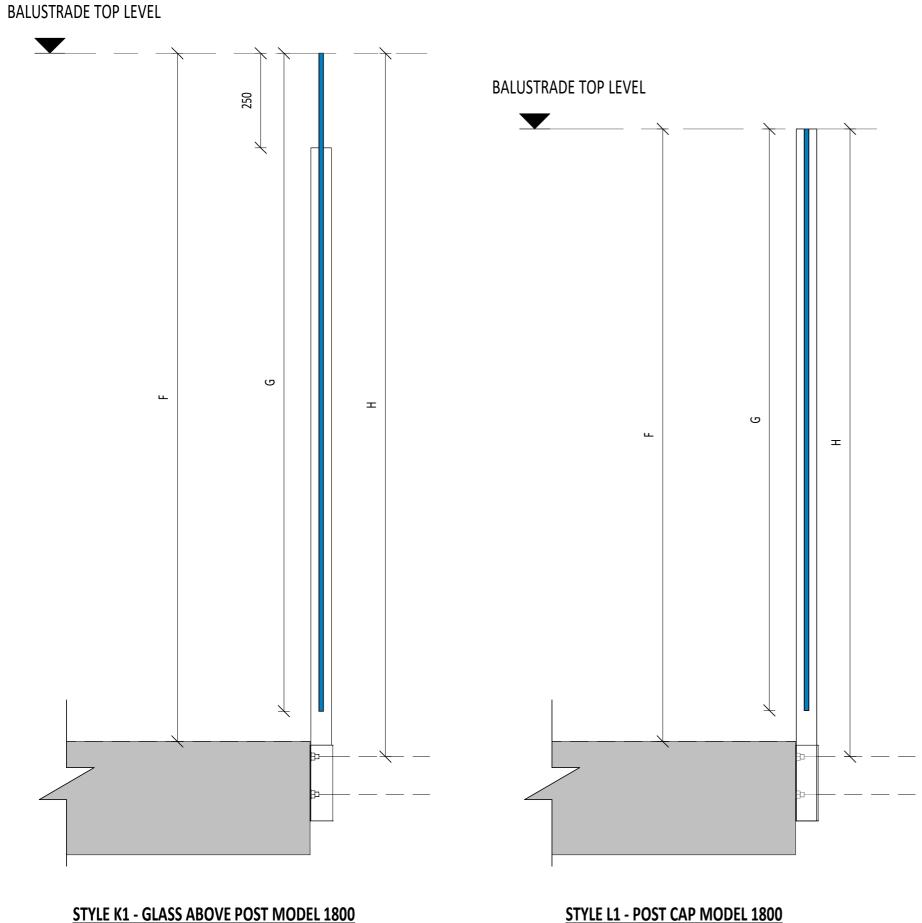
www.extra-mile.co.nz, info@extra-mile.co.nz

consulting structural engineers

7 Market Street

m. 0210398833, m.0211099712

Napier. 4110


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 3 - POOL FENCE AND WIND
BREAK, NO HANDRAIL
- LATERAL MOUNTED

Drawing: PANEL SIZES

 REF.
 DESCRIPTION
 DATE

 R.0
 FOR INFORMATION
 2024.12.09

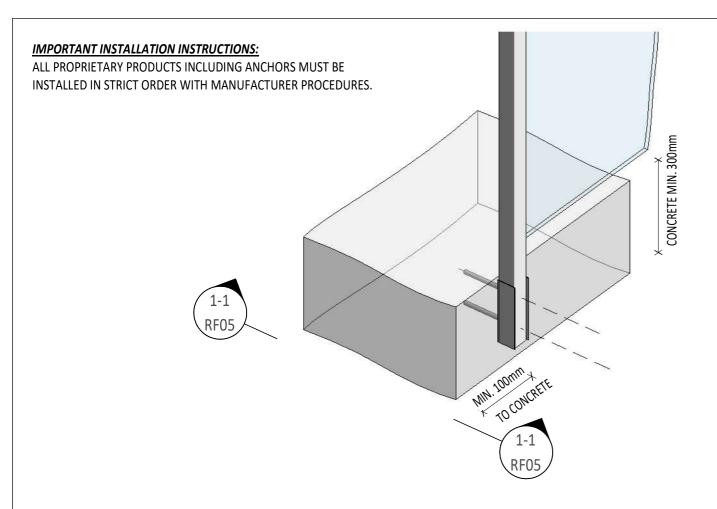
 Scale: As indicated@a3
 drawn: SN
 checked: PM
 status: project no: 24042
 drg no: RF03
 rev: R.0

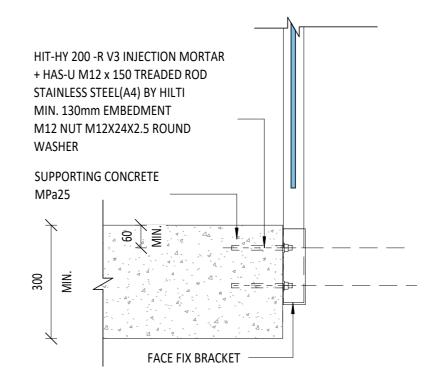
WIND BREAKER CONFIGURATIONS **HEIGHT POST WIND MODEL MAX GLASS OCCUPANCY** FFL (F) **SPACING FROM** TYPE ZONE HEIGHT (G) FIXING (H) mm A, C3, B, E 1860 1800 1740 1850 A, C3, B, E Η 1860 1800 1740 1300 STYLE K1 A, C3, B, E VH 1860 1800 1740 1100 A, C3, B, E EΗ 1860 1800 1740 0800 A, C3, B, E M 1860 1800 1738 1850 A, C3, B, E 1860 1800 1738 1300 STYLE L1 A, C3, B, E VH 1860 1800 1738 1100 EΗ 0800 A, C3, B, E 1860 1800 1738

GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

consulting structural engineers 7 Market Street

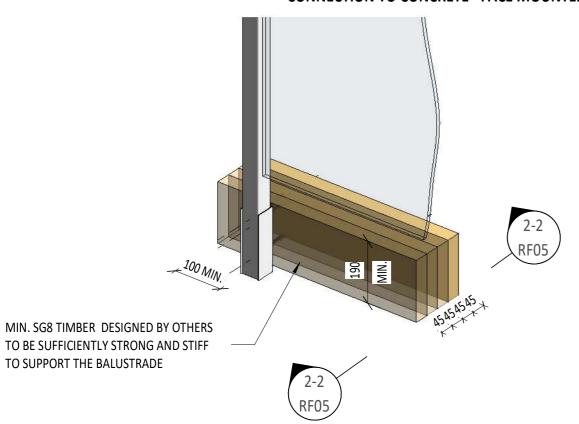

Napier. 4110

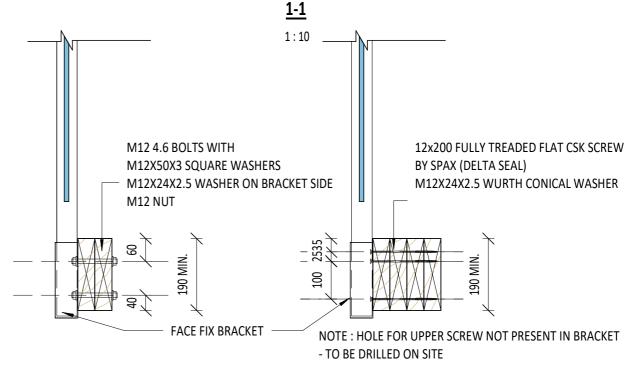

1:10

m. 0210398833, m.0211099712 www.extra-mile.co.nz, info@extra-mile.co.nz Client: VETRO RACCORDI / **FMI BUILDING INNOVATION** Project: SET 3 - POOL FENCE AND WIND **BREAK, NO HANDRAIL** - LATERAL MOUNTED

1:10

REF.	DESCRIP	TION						DA	TE
R.0	FOR INF	ORMA	TION					2024.	12.09
scale: As indicated@A3	drawn:	SN	checked: PM	status:	-	project no: 24042	drg no:	rev:	R.0





CONNECTION TO CONCRETE - FACE MOUNTED

CONNECTION TO TIMBER - FACE MOUNTED

www.extra-mile.co.nz, info@extra-mile.co.nz

TIMBER OPTION 1

TIMBER OPTION 2

NOTE: ONLY OPTION 1 SUITABLE FOR WET TIMBER

<u>2-2</u>

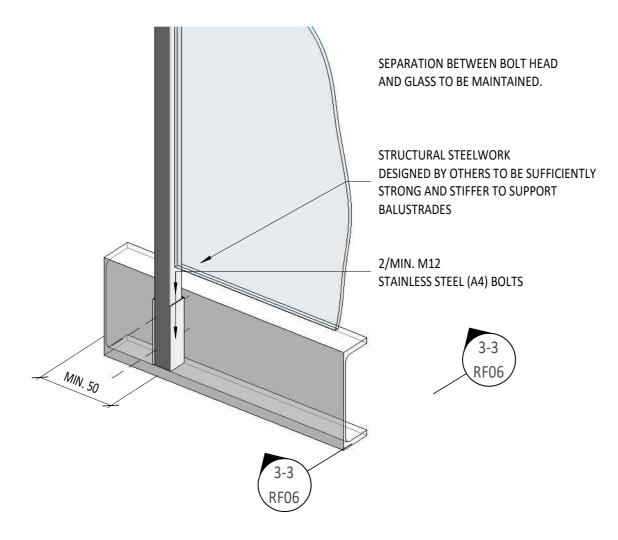
1:10

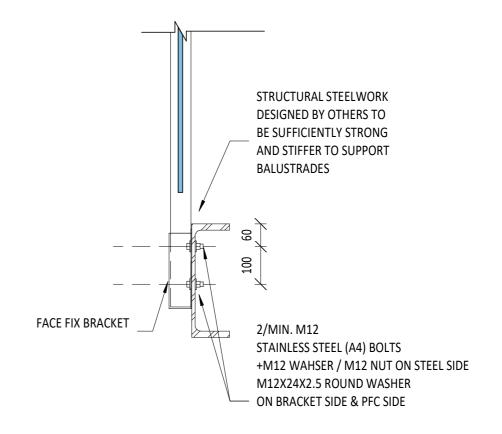
consulting structural engineers

7 Market Street

m. 0210398833, m.0211099712

Napier. 4110


Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 3 - POOL FENCE AND WIND
BREAK, NO HANDRAIL
- LATERAL MOUNTED


Drawing:
POOL FENCE AND WIND BREAK
CONNECTION DETAILS

REF.	DESCRIPTION					DA	ATE
R.0	FOR INFORMA	TION				2024.	.12.09
scale: 1:10@A3	drawn:	checked:	status:	project no: 24042	drg no: RF05	rev:	R.0

IMPORTANT INSTALLATION INSTRUCTIONS:

ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.

CONNECTION TO STRUCTURAL STEEL - FACE MOUNTED

<u>3-3</u>

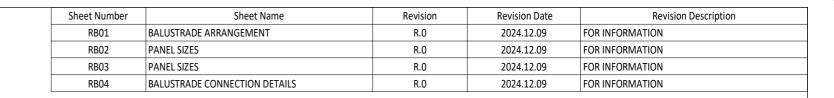
1:10

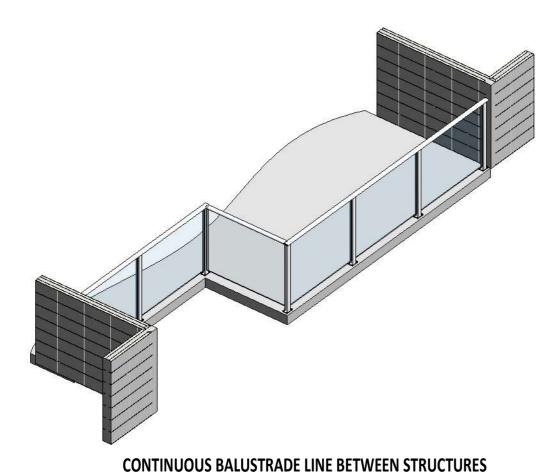
consulting	= = structural engineers

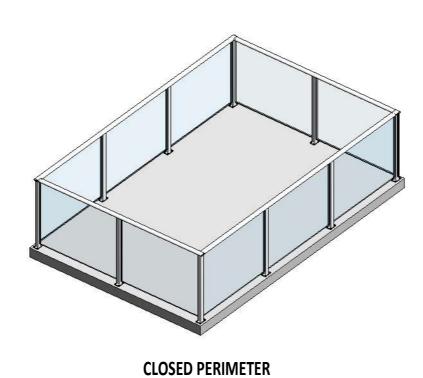
www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 3 - POOL FENCE AND WIND
BREAK, NO HANDRAIL
- LATERAL MOUNTED

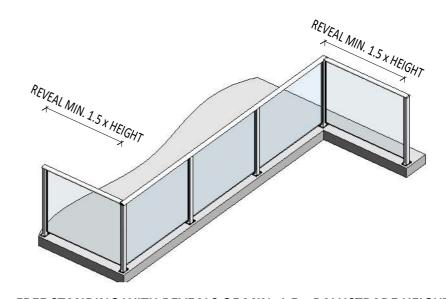

Drawing:
POOL FENCE AND WIND BREAK
CONNECTION DETAILS


REF.	DESCRIPTION					DA	TE
R.0	FOR INFORMA	TION				2024.	12.09
scale: 1:10@A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RF06	rev:	R.0



APPENDIX D

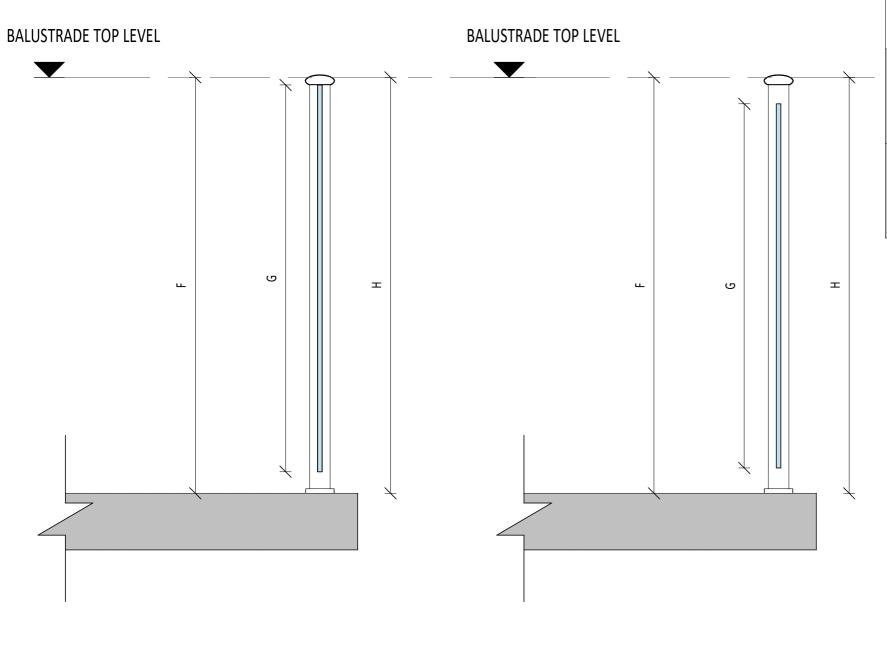
Floor Mounted Design Drawings and Details



BALUSTRADE / POOL FENCE ARRANGEMENT HAS TO BE CONSISTENT WITH ONE OR COMBINATION OF THE PRESENTED ARRANGEMENTS TO MEET THE LOAD ASSUMPTIONS

www.extra-mile.co.nz, info@extra-mile.co.nz

FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT



Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 4 - BALUSTER WITH HANDRAIL
- FLOOR MOUNTED

Drawing:
BALUSTRADE ARRANGEMENT

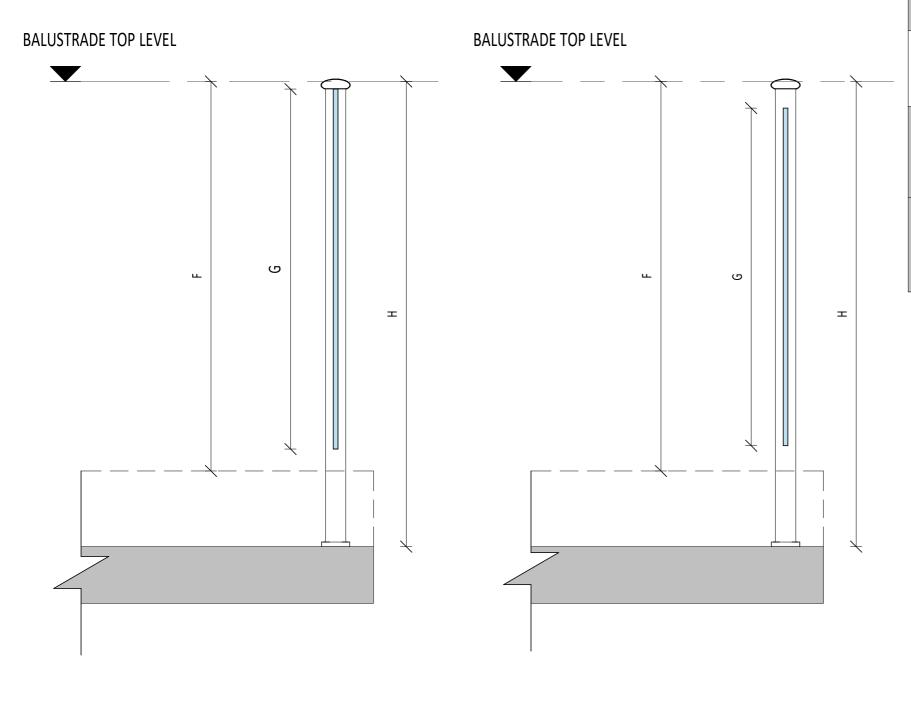
REF.	DESCRIPTION					DA	TE
R.0	FOR INFORMA	TION				2024.	12.09
scale: @A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB01	rev:	R.0

BALUSTRADE CONFIGURATIONS HEIGHT MODEL WIND MAX GLASS POST SPACING OCCUPANCY FFL (F) FROM HEIGHT (G) TYPE ZONE mm FIXING (H) 1100 A, C3, B, E M 1100 1023 1350 1100 1023 1350 A, C3, B, E Н 1100 STYLE A VH 1100 1100 1023 1350 A, C3, B, E A, C3, B, E EΗ 1100 1100 1023 1150 A, C3, B, E М 1100 1100 963 1350 A, C3, B, E Η 1100 1100 963 1350 STYLE B A, C3, B, E 963 1350 VH 1100 1100 A, C3, B, E EΗ 1100 1100 963 1150

STYLE A - GLASS INTO HANDRAIL MODEL

STYLE B - GAP AT TOP OF GLASS MODEL-50mm

1:10


GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 4 - BALUSTER WITH HANDRAIL
- FLOOR MOUNTED

REF.	DESCRIPTION					D/	ATE
R.0	FOR INFORMA	TION				2024	.12.09
scale: As indicated@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB02	rev:	R.0

BALUSTRADE CONFIGURATIONS - FLOATING DECK WIND **MODEL HEIGHT FROM** MAX GLASS **POST OCCUPANCY** FFL (F) HEIGHT (G) SPACING (S) TYPE FIXING (H) ZONE A, C3, B, E M 1230 1030 953 1200 A, C3, B, E 1230 1030 953 Н 1200 STYLE C A, C3, B, E VH 1230 1030 953 1200 A, C3, B, E EΗ 1230 1030 953 0950 A, C3, B, E 1230 1030 893 1200 A, C3, B, E 1230 1030 893 1200 Н STYLE D A, C3, B, E VH 1230 1030 893 1200 A, C3, B, E EΗ 1230 1030 893 1000

STYLE C - FLOATING DECK GLASS INTO HANDRAIL

MODEL
1:10

STYLE D - FLOATING DECK GAP AT TOP OF GLASS

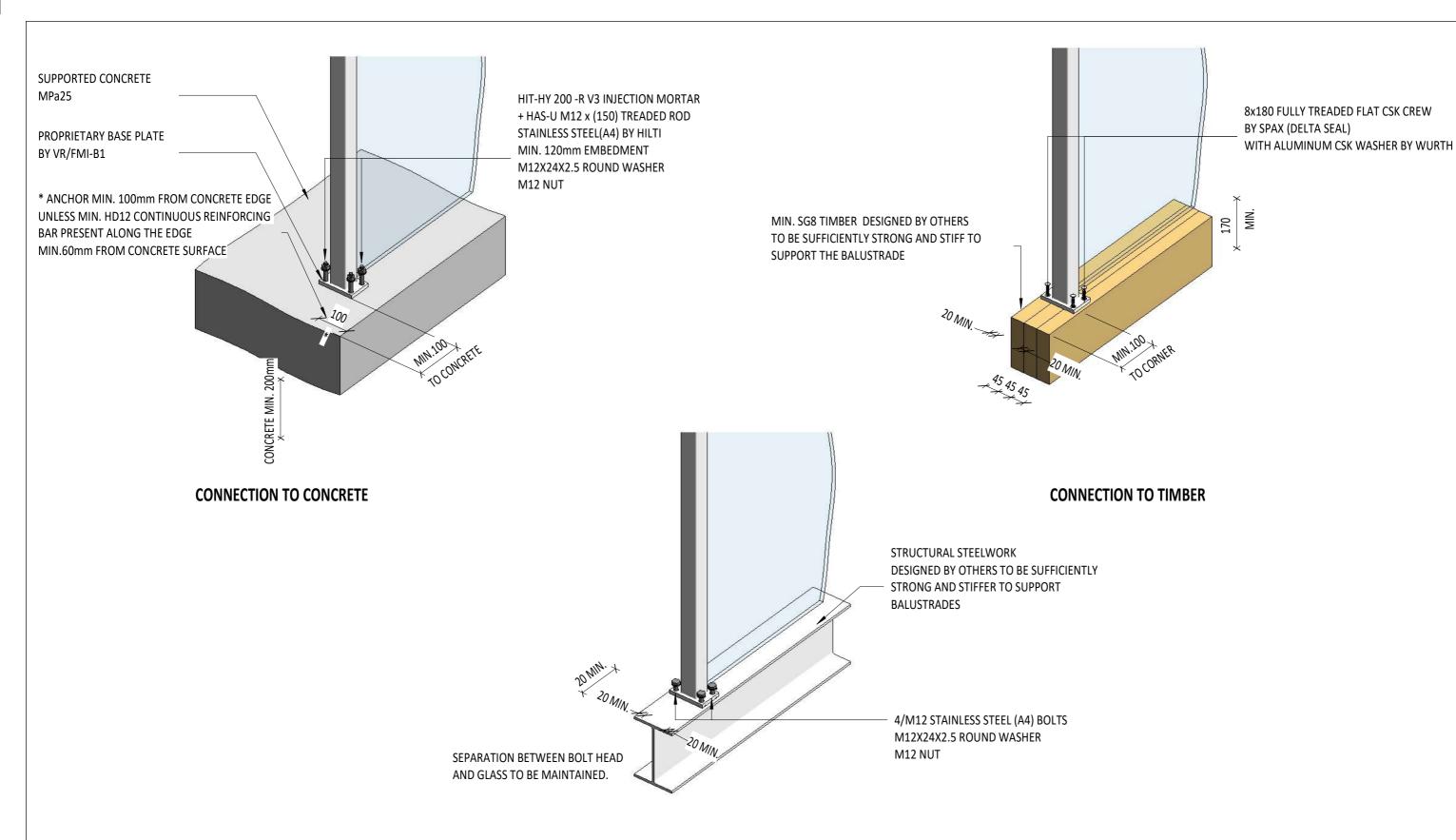
MODEL-50mm

GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

Client:
VETRO RACCORDI /
FMI BUILDING INNOVATION

Project:
SET 4 - BALUSTER WITH HANDRAIL
- FLOOR MOUNTED


Drawing: PANEL SIZES

 REF.
 DESCRIPTION
 DATE

 R.0
 FOR INFORMATION
 2024.12.09

 scale:
 drawn:
 status:
 project no:
 drg no:
 rev:

 As indicated@A3
 SN
 PM
 24042
 RB03
 R.0

CONNECTION TO STRUCTURAL STEEL

IMPORTANT INSTALLATION INSTRUCTIONS:

ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.

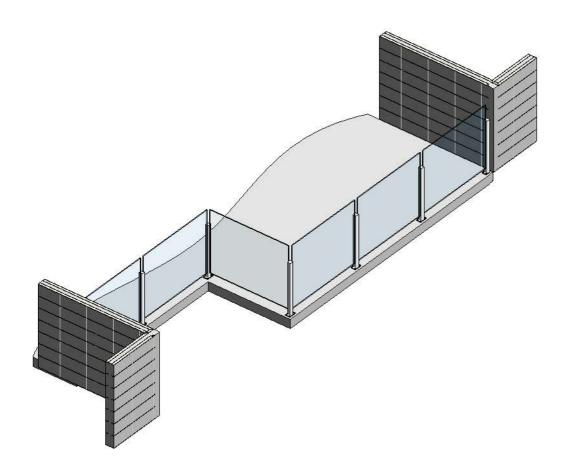
www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

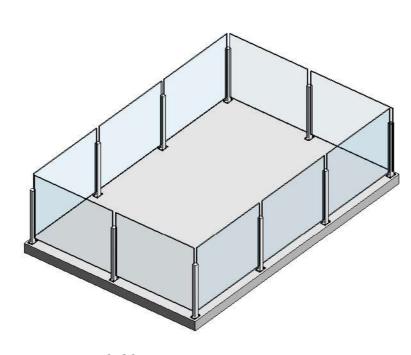
VETRO RACCORDI / FMI BUILDING INNOVATION

Client:

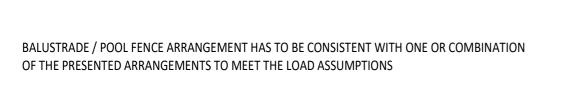
Project:
SET 4 - BALUSTER WITH HANDRAIL
- FLOOR MOUNTED


Drawing:
BALUSTRADE CONNECTION
DETAILS

 REF.
 DESCRIPTION
 DATE


 R.0
 FOR INFORMATION
 2024.12.09

 scale:
 drawn:
 checked:
 project no:
 adg no:
 rev:
 RB04
 R.0


Sheet Number	Sheet Name	Revision	Revision Date	Revision Description
RB01	BALUSTRADE ARRANGEMENT	R.0	2024.12.09	FOR INFORMATION
RB02	PANEL SIZES	R.0	2024.12.09	FOR INFORMATION
RB03	BALUSTRADE CONNECTION DETAILS	R.0	2024.12.09	FOR INFORMATION

CONTINUOUS BALUSTRADE LINE BETWEEN STRUCTURES

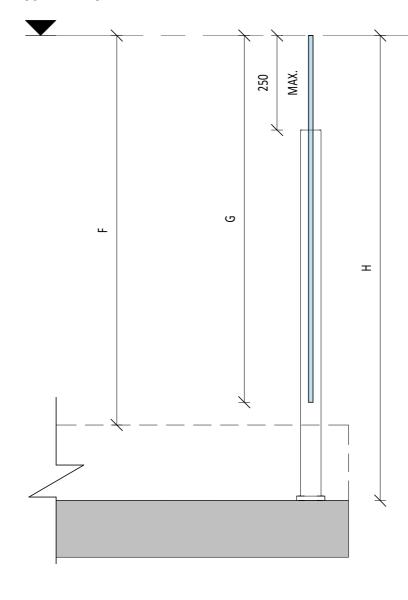
CLOSED PERIMETER

www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 5 - BALUSTER WITH NO
HANDRAIL
- FLOOR MOUNTED

Drawing:
BALUSTRADE ARRANGEMENT


REF.	DESCRIPTION					DAT			
R.0	FOR INFORMA	FOR INFORMATION							
scale: @A3	drawn:	checked:	status:	project no: - 24042	drg no: RB01	rev:	R.0		

FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT

BALUSTRADE TOP LEVEL

The state of the state

BALUSTRADE TOP LEVEL

STYLE F - FLOATING DECK GLASS ABOVE POST MODEL

STYLE E - GLASS ABOVE POST MODEL

1:10

GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

BALUSTRADE CONFIGURATIONS

HEIGHT FROM

FIXING (H)

1100

1100

1100

1100

1230

1230

1230

1230

WIND

ZONE

M

Н

VH

EH

M

Н

VH

EH

OCCUPANCY

A, C3, B, E

POST

SPACING

mm

1350

1350

1350

1150

1200

1200

1200

0950

MAX GLASS

HEIGHT (G)

1040

1040

1040

1040

970

970

970

970

FFL (F)

1100

1100

1100

1100

1030

1030

1030

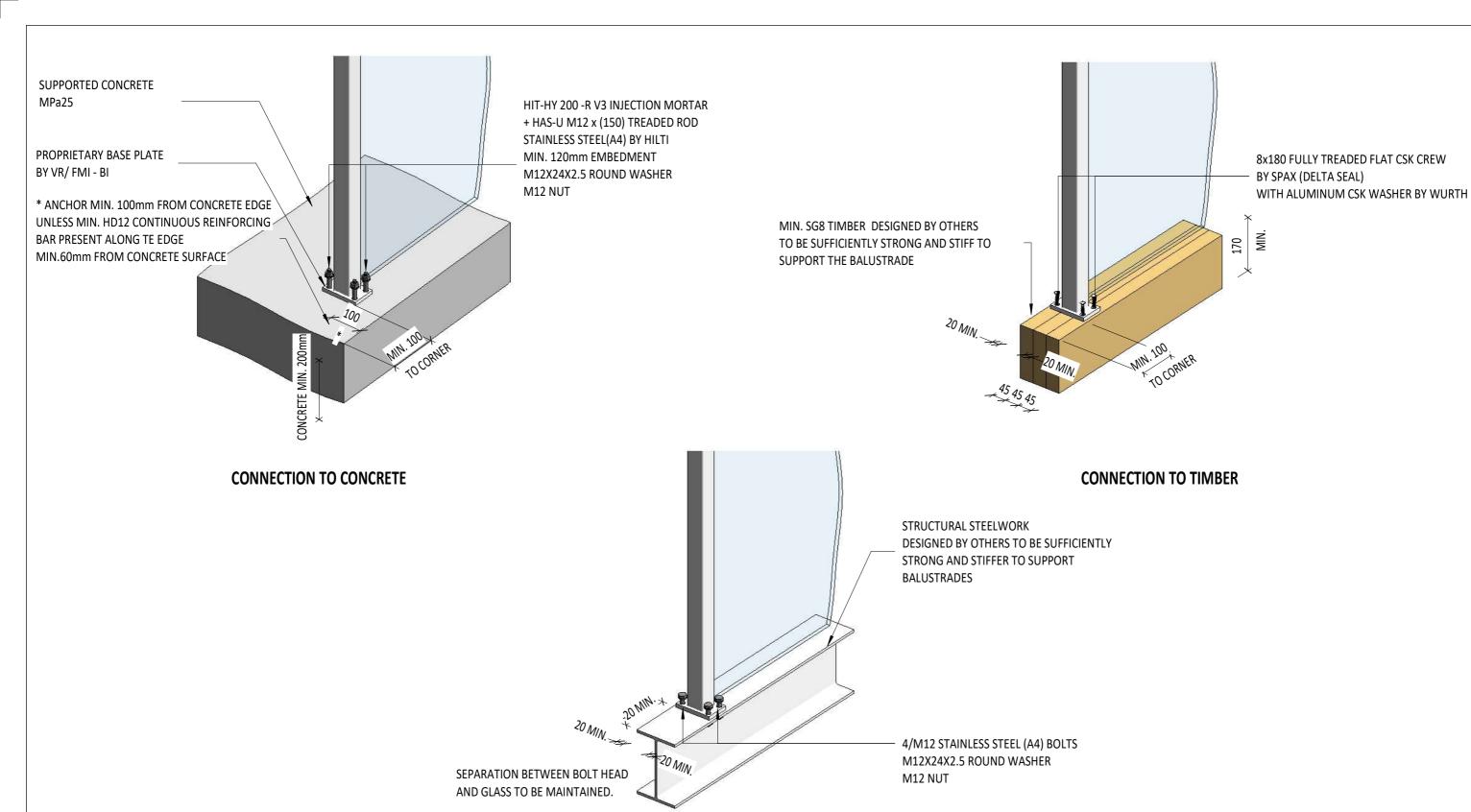
1030

www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 5 - BALUSTER WITH NO
HANDRAIL
- FLOOR MOUNTED

Drawing: PANEL SIZES


MODEL

TYPE

STYLE E

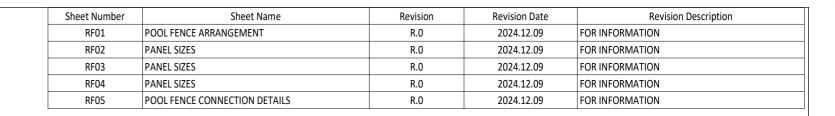
STYLE F

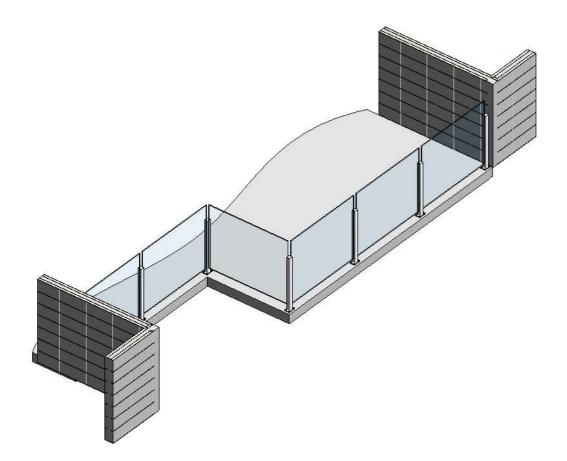
REF.	DESCRIPTION					DA	TE
R.0	FOR INFORMA	TION				2024.	12.09
scale: As indicated@A3	drawn:	checked: PM	status:	project no: 24042	drg no: RB02	rev:	R.0

CONNECTION TO STRUCTURAL STEEL

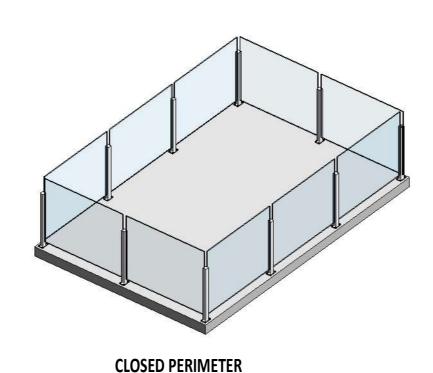
IMPORTANT INSTALLATION INSTRUCTIONS:

ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.


www.extra-mile.co.nz, info@extra-mile.co.nz


Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 5 - BALUSTER WITH NO
HANDRAIL
- FLOOR MOUNTED


Drawing:
BALUSTRADE CONNECTION
DETAILS

	REF.	DESCRIPTION					DA	TE
	R.0	FOR INFORMA	TION				2024.	12.09
- 1	scale: @A3	drawn:	checked:	status:	project no: 24042	drg no: RB03	rev:	R.0

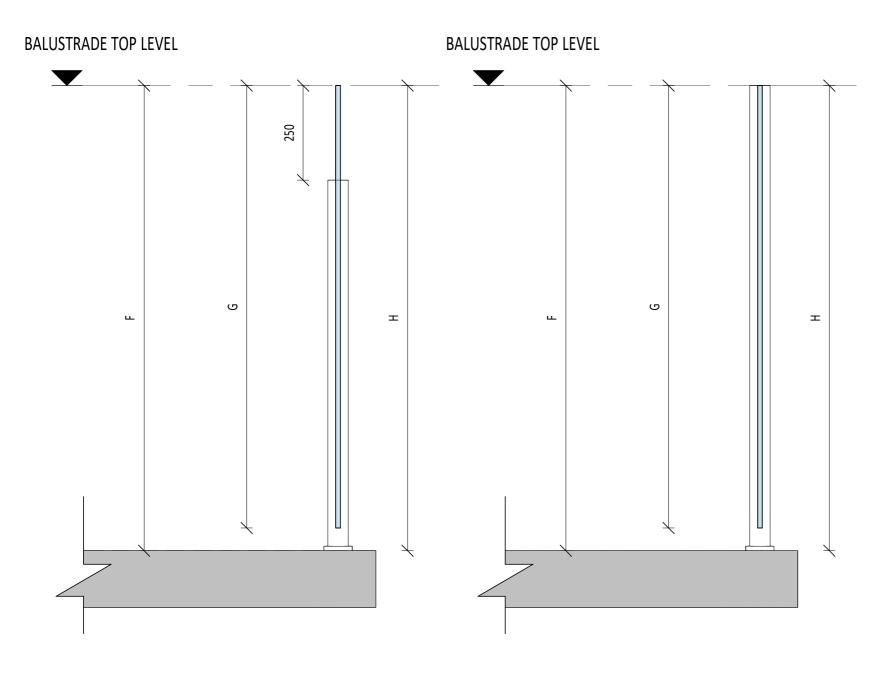
CONTINUOUS BALUSTRADE LINE BETWEEN STRUCTURES

REVEAL MIN. 1.5 X HEIGHT

FREE STANDING WITH REVEALS OF MIN. 1.5 x BALUSTRADE HEIGHT

BALUSTRADE / POOL FENCE ARRANGEMENT HAS TO BE CONSISTENT WITH ONE OR COMBINATION OF THE PRESENTED ARRANGEMENTS TO MEET THE LOAD ASSUMPTIONS

www.extra-mile.co.nz, info@extra-mile.co.nz


Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION

Project:
SET 6 - POOL FENCE AND WIND
BREAK
- FLOOR MOUNTED

Drawing:
POOL FENCE ARRANGEMENT

REF.	DESCRIPTION					D	ATE
R.0	FOR INFORMA	TION				2024	.12.09
scale: @A3	drawn:	checked: PM	status:	project no: 24042	drg no: RF01	rev:	R.0

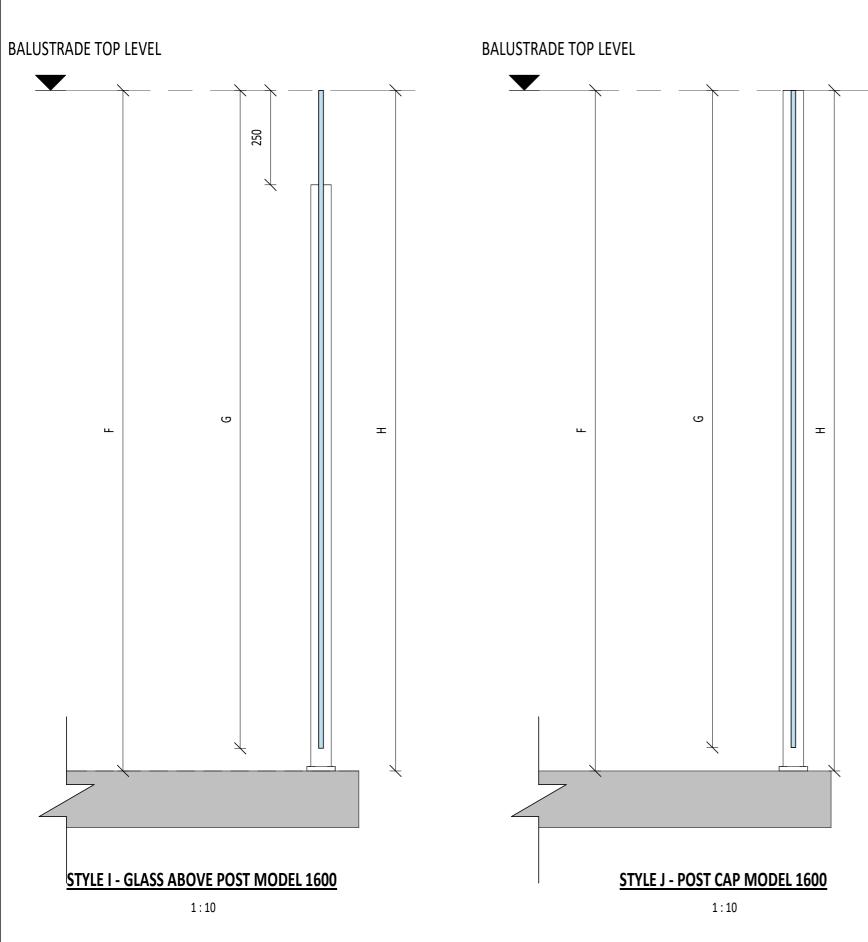
POOL FENCE CONFIGURATIONS HEIGHT **MODEL MAX GLASS POST** OCCUPANCY WIND ZONE FFL (F) FROM HEIGHT (G) SPACING mm **TYPE** FIXING (H) M 1230 1230 1170 1950 A, C3, B, E A, C3, B, E 1230 1230 1170 1450 Н STYLE G 1230 1230 1170 1200 A, C3, B, E A, C3, B, E 900 EΗ 1230 1230 1170 A, C3, B, E M 1230 1230 1170 1950 A, C3, B, E 1170 Η 1230 1230 1450 STYLE H A, C3, B, E VH 1170 1200 1230 1230 A, C3, B, E EΗ 1230 1230 1170 900

STYLE G - GLASS ABOVE POST MODEL

1:10

STYLE H - POST CAP MODEL

1:10


GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 6 - POOL FENCE AND WIND
BREAK
- FLOOR MOUNTED

REF.	DESCRIPTION					DATI	Ε
R.0	FOR INFORMA	TION				2024.12	2.09
cale: s indicated@A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RF02	rev:	R.0

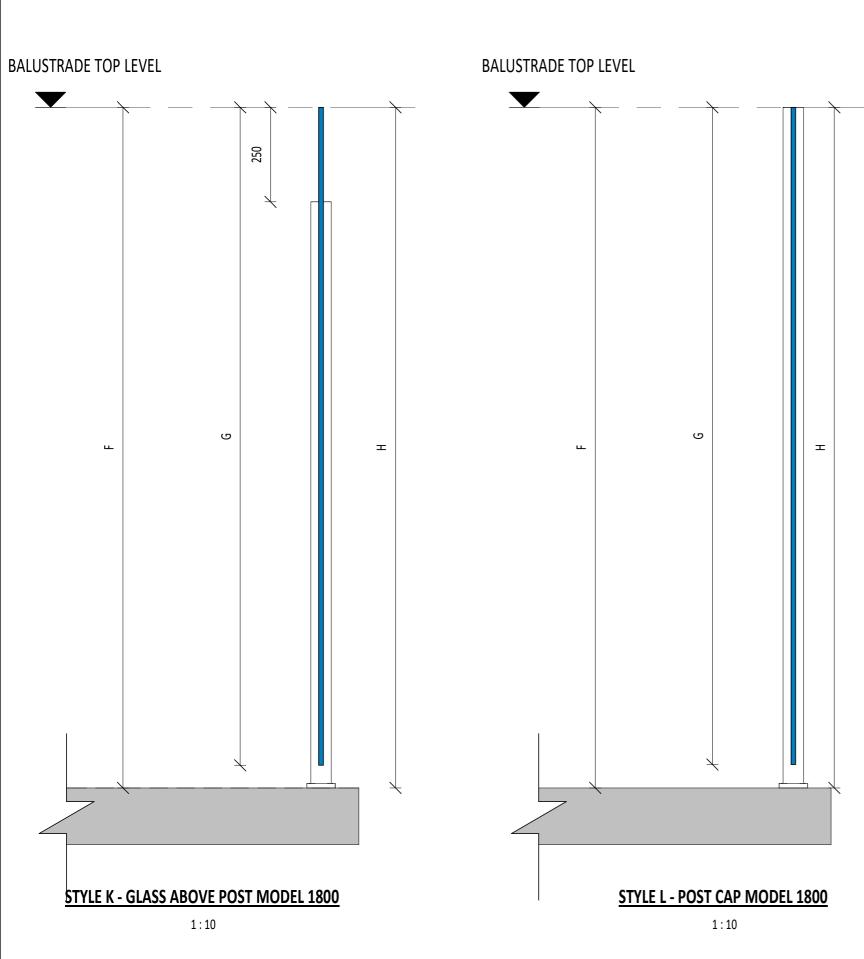
WIND BREAKER CONFIGURATIONS									
MODEL TYPE	OCCUPANCY	WIND ZONE	HEIGHT FROM FIXING (H)	FFL (F)	MAX GLASS HEIGHT (G)	POST SPACING mm			
	A, C3, B, E	M	1600	1600	1540	1200			
STYLE I	A, C3, B, E	Н	1600	1600	1540	850			
SITLET	A, C3, B, E	VH	1600	1600	1540	700			
	A, C3, B, E	EH	1600	1600	1540	550			
	A, C3, B, E	M	1600	1600	1538	1200			
CTVLE I	A, C3, B, E	Н	1600	1600	1538	850			
STYLE J	A, C3, B, E	VH	1600	1600	1538	700			
	A, C3, B, E	EH	1600	1600	1538	550			

GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

consulting structural engineers

7 Market Street


m. 0210398833, m.0211099712

www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 6 - POOL FENCE AND WIND
BREAK
- FLOOR MOUNTED

REF.		DESCRIPTION								DATE		
R.0		FOR INF	FOR INFORMATION									
scale: As indica	ted@A3	drawn:	SN	checked: PM	status:	-	project no: 24042	drg no:	rev:	R.0		

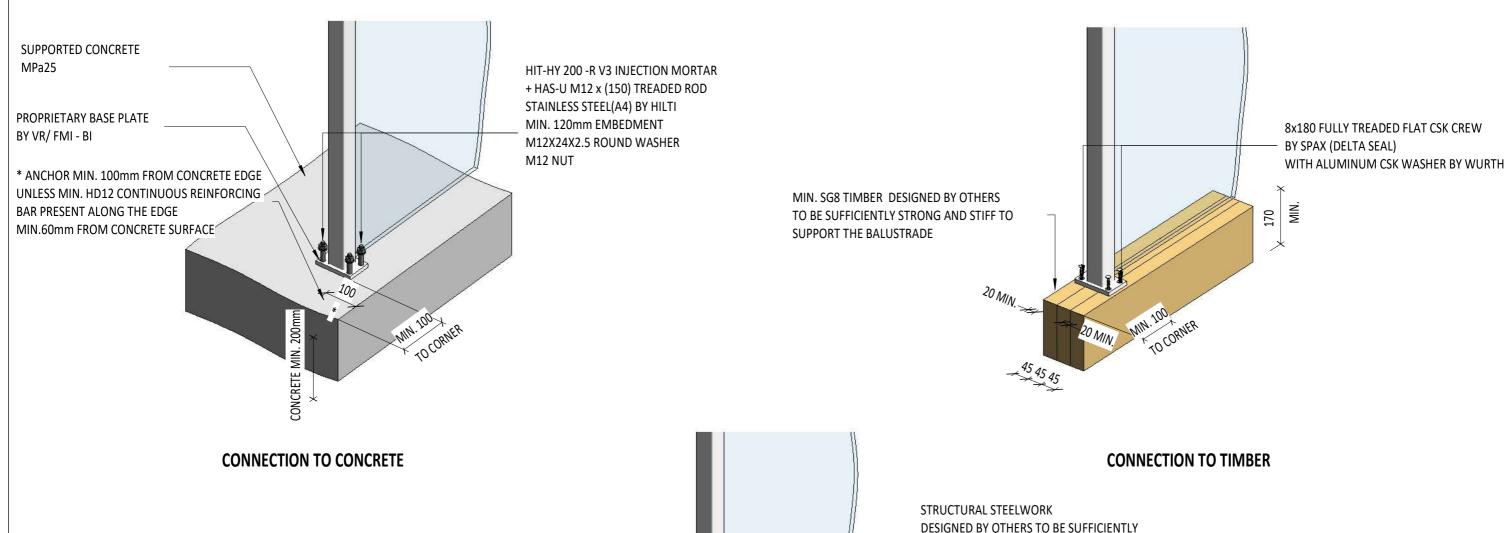
WIND BREAKER CONFIGURATIONS									
MODEL TYPE	OCCUPANCY	WIND ZONE	HEIGHT FROM FIXING (H)	FFL (F)	MAX GLASS HEIGHT (G)	POST SPACING mm			
STYLE K	A, C3, B, E	М	1800	1800	1740	950			
	A, C3, B, E	Н	1800	1800	1740	650			
SITLER	A, C3, B, E	VH	1800	1800	1740	550			
	A, C3, B, E	EH	1800	1800	1740	400			
	A, C3, B, E	M	1800	1800	1738	950			
STYLE L	A, C3, B, E	Н	1800	1800	1738	650			
STILEL	A, C3, B, E	VH	1800	1800	1738	550			
	A, C3, B, E	EH	1800	1800	1738	400			

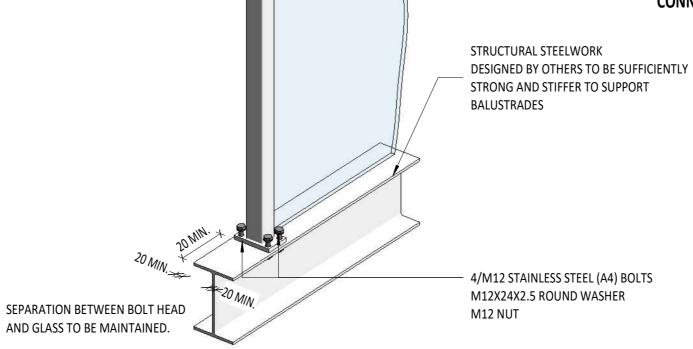
GLASS NOTES:

12mm NOMINAL THICKNESS FULLY TOUGHENED GLASS.

consulting structural engineers

7 Market Street


m. 0210398833, m.0211099712


www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project:
SET 6 - POOL FENCE AND WIND
BREAK
- FLOOR MOUNTED

scale: As indicated@A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RF04	rev:	R.0	
R.0	FOR INFORMA	FOR INFORMATION						
REF.	DESCRIPTION					D/	ATE	

CONNECTION TO STRUCTURAL STEEL

IMPORTANT INSTALLATION INSTRUCTIONS:

ALL PROPRIETARY PRODUCTS INCLUDING ANCHORS MUST BE INSTALLED IN STRICT ORDER WITH MANUFACTURER PROCEDURES.

www.extra-mile.co.nz, info@extra-mile.co.nz

Napier. 4110

Client: VETRO RACCORDI / FMI BUILDING INNOVATION Project: SET 6 - POOL FENCE AND WIND BREAK

- FLOOR MOUNTED

Drawing:
POOL FENCE CONNECTION DETAILS

REF.	DESCRIPTION					DA	TE	
R.0	FOR INFORMATION							
scale: @A3	drawn: SN	checked: PM	status:	project no: 24042	drg no: RF05	rev:	R.0	