P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ
Dr. H.D.W. FENDALL (Consultant)

B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ

6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds29 11 September 2018

Glass Fittings / Vetro Raccordi Ltd

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE

<u>USING CUBOID FACE FIX SYSTEM &</u> 13.52mm thick EVA TOUGHENED LAMINATED GLASS

	INDEX	ЭE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B and C3.	
	The glass balustrade had also been tested for max "Very High" wind load.	
3.	Load Tests	3
4.	Tests Arrangement & Results	4
4.1	<u>Balustrade</u>	4
	Based on the testing, the glass balustrade which comprised of 13.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EV interlayer + 6mm Toughened) supported by Cuboid Face Fix System with top side clips was sufficient for the following:	′A
	Occupancy types A, B, C3Up to max "Very High" Wind	
5.	<u>Testing to Demonstrate Compliance of Structural Glass Barrier without an Interlinking Rail</u>	6
	Based on the testing, the 13.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 6mm Toughened) supported by Cuboid Face Fix System with top side clips had complied with the load and deflection requirements of Acceptable Solution B1/AS1 Clause 7.3.1 (Amendment 15).	:
6.	Base Fixings	7
	Refer to Summary Drawing ENG 01 for reference.	
6.1	Base Fixings for Internal Balustrade ➤ For Occupancy types A, B, C3 ➤ For Up to max "Very High" Wind	7
6.2	Base Fixings for External Balustrade ➤ For Occupancy types B, C3 ➤ For Up to max "Very High" Wind	9

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by Glass Fittings / Vetro Raccordi Ltd.

Building Code Clause(s) B1,B2,F2,F4

PRODUCER STATEMENT – PS1 – DESIGN

(Guidance notes on the use of this form are printed on page 2)

ISSUED BY: P&P CONSULTING ENGINEERS LIMITED (Design Firm)	
TO: GLASS FITTINGS / VETRO RACCORDI (Owner/Develop	
TO BE SUPPLIED TO: VARIOUS (Building Consent Ac	thority)
IN RESPECT OF: GLASS BALUSTRADE USING CUBOID FACE (Description of Building	FIX SYSTEM & 13.52mm thick EVA TOUGHENED LAMINATED
AT: VARIOUS SITES (Occupancy Type A,B,C (Address) LOT	3 and Up to max "Very High" Wind)
We have been engaged by the owner/developer referred to about DESIGN FOR BASE FIXING	services in respect of the requirements of
Clause(s) B1, B2, F2, F4	of the Building Code for
Clause(s)B1, B2, F2, F4 All or Part only (as specified in the attachment to this staten	nent), of the proposed building work.
The design carried out by us has been prepared in accordance wi	
Compliance Documents issued by the Ministry of Business, Inr	(verification method / acceptable solution)
Alternative solution as per the attached schedule	
The proposed building work covered by this producer statement is	described on the drawings titled GLASS FITTINGS /VETRO
RACCORDI LTD/CUBOID FACE FIX and numbered . together with the specification, and other documents set out in the On behalf of the Design Firm, and subject to:	schedule attached to this statement.
(i) Site verification of the following design assumptions REFER 1(ii) All proprietary products meeting their performance specification	
I believe on reasonable grounds that a) the building, if construct other documents provided or listed in the attached schedule, will cand that b), the persons who have undertaken the design have the following level of construction monitoring/observation: CM1 CM2 CM3 CM4 CM5 (Engineering Categories) or as provided in the attached schedule, will be an attached schedule.	comply with the relevant provisions of the Building Code he necessary competency to do so. I also recommend
I, MR. P PRAKASH am: (Name of Design Professional)	☑CPEng251801 #
(Name of Design Foressional)	□Reg Arch#
I am a Member of : I IPENZ NZIA and hold the following qua The Design Firm issuing this statement holds a current polic \$200,000*.	
The Design Firm is a member of ACENZ:	
SIGNED BY MR. P PRAKASH ON BE	EHALF OF .P&P CONSULTING ENGINEERS LIMITED (Design Firm)
Date 11 SEPTEMBER 2018 (signature)	
Date	
Consent Authority in relation to this building work, whether in contract, to \$200,000*.	

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, IPENZ AND NZIA

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

 NZS 4223.3:2016
 Glazing In Buildings

 AS/NZS 1170:2002
 Loadings Code

 NZS 3404:1997
 Structural Steel

 NZS 3101:1995
 Concrete

 NZS 3603:1993
 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

Occupancy	Specific Uses	Top E	<u>Infill</u>	
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa
B & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN

Wind Loads (VERY HIGH)

Design for Very High Winds in terms of the Wind Speed categories in									
N	NZS 3604:2011 (up to 50 m/s).								
$V_{sit,\beta}(Ultimate)$	=	50.0	m/s						
$V_{sit,\beta}$ (Serviceability)	=	37.3	m/s						
·									
q	=	1.50	kPa (ULS)						
and	=	0.83	kPa (SLS)						
For external barriers use	Cp =	1.30							
For internal barriers use	Cp =	0.30							
Wind Load = $q x$	Cp =	1.95	kPa (ULS)						
	=	1.08	kPa (SLS)						

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

3. LOAD TESTS

<u>Location of Tests</u>: 49 Woodside Avenue, Auckland

<u>Date of Tests</u>: August 2018

<u>Test Description</u>: Load testing of Glass Balustrade

(Panel Tested = 1200mm wide x 1200mm high glass panel)

System Description: The glass balustrade which was supplied by Glass Fittings / Vetro Raccordi

Ltd, comprised of 13.52mm thick EVA Toughened Laminated (Grade A)

Safety Glass (6mm Toughened + 1.52mm EVA Interlayer + 6mm

Toughened), top side clips fixed to side posts and Cuboid Face Fix System.

Setup / Procedure:

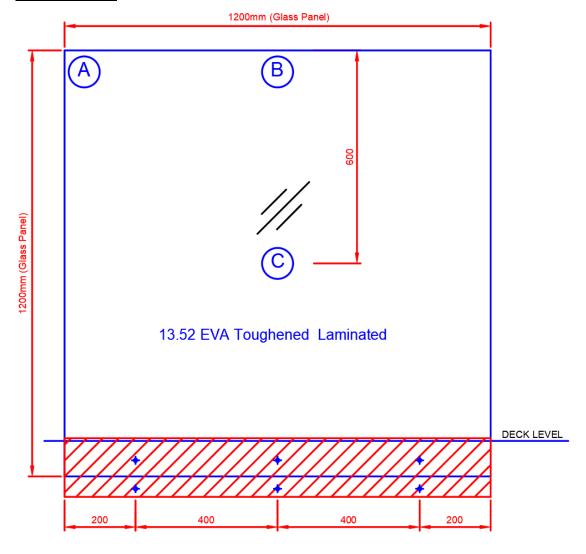
The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with Cuboid Face Fix system. This channel system was bolted to the steel frame assembly with M10 fixings as shown below. The glass panel was also clipped at each side to the supporting posts acting as the supporting neighboring glass panels.

Hydraulic Body Frame/Ram and load cell or weighing indicator were used to attain the required test loads.

13.52 EVA Toughened Laminated Glass Panel

Hydraulic Body Frame

Weighing Indicator


Cuboid Face Fix System

Steel Frame Assembly

glassfittings.co.nz

4. TESTS ARRANGEMENT & RESULTS

4.1 BALUSTRADE

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

glassfittings.co.nz

TEST RESULTS (Fracture Check)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122.0	16	No Fracture
В	183.0	16	No Fracture
С	380.7	16	No Fracture

TEST RESULTS (Deflection Check)

Tooto	Target Load	Deflec	tion @ Top ((mm)	Remarks
Tests	@ SLS (Kg)	Sample 1 Sample		Sample 3	Remarks
Α	61.2	12	12	12	Passed
В	91.7	14	13	14	Passed
С	159.2	11	12	12	Passed

Allowable Deflection = H/30 = 36.7 mm

Based on the testing, the glass balustrade which comprised of 13.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 6mm Toughened) supported by Cuboid Face Fix System with top side clips was sufficient for the following:

- Occupancy types A, B, C3
- Up to max "Very High" Wind

5. <u>Testing to Demonstrate Compliance of Structural Glass Barrier without an Interlinking Rail</u>

The toughened laminated glass panel had also been tested in accordance with the requirement of Acceptable Solution B1/AS1 Clause 7.3.1 (Amendment 15).

According to this clause, to demonstrate compliance with this requirement, the toughened laminated safety glass barrier without interlinking rails, when both panes of the laminate are fractured, must resist a 0.2 kN concentrated load and must not deflect more than 250mm. The concentrated load shall be applied over an area of 100mm x 100mm and for at least one minute.

The following were used in this testing:

<u>Laminated Glass:</u> 6mm Toughened Glass +1.52mm EVA Interlayer +6mm Toughened Glass <u>System:</u> Cuboid Face Fix System + Top side clips

, Hydraulic Body Frame

13.52 EVA Toughened Laminated Glass Panel

<u>Procedure:</u> Both panes of the laminate were fractured first and then a 20kg was applied at the top center location of the glass panel using the hydraulic ram.

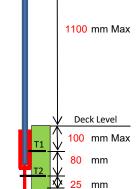
The test load and deflection were recorded as follows:

Load applied	Deflection at Top
20 kg	< 250mm (after 1 minute load)

Based on the testing, the 13.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 6mm Toughened) supported by Cuboid Face Fix System with top side clips had complied with the load and deflection requirements of Acceptable Solution B1/AS1 Clause 7.3.1 (Amendment 15).

glassfittings.co.nz

Refer to Summary Drawing ENG 01 for reference.


6.1 BASE FIXINGS FOR INTERNAL BALUSTRADE

- For Occupancy types A, B, C3

- For Up to max "Very High" Wind

Maximum Tributary Spacing of Fixings = 400 mm Number of row of base fixings per panel = 3

		1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.3	kN
	C3 loading	1.5Q2:	1.5 x 0.75kN/m x trib spacing =	0.45	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
(V.H)	Wind - external	Wuls:	0.6 x 50 x 50 /1000 x 1.3 =	1.95	kPa

Tension Forces (central bolts)

1.5Q1: 4.80 4.50 kΝ N*/anchor = 7.20 6.75 1.5Q2: N*/anchor = kΝ 1.5Q3: N*/anchor = 6.14 5.36 kN Wuls: N*/anchor = 7.98 6.97 kN

T1

T2

Max N*/anchor = 7.98 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = $1.2 \times (28 \text{ kN/m3 x thickness } \times \text{Area}) = 0.316 \text{ kN}$ 1.2 x Weight of Al Channel= $1.2 \times (0.5 \text{ kN/m x spacing}) = 0.24 \text{ kN}$

1.2G: $V^*/anchor = 0.56 \text{ kN}$

A. Fixing to Concrete

Refer to page 8 for design calculations.

Anchor Spacing= 80mm Concrete Strength, f'c = 20MPa min
Concrete Edge Dist= 50mm min Considered as NON-Cracked Concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 22.70 kN OK CDR= 0.55 < 1.2 OK ØV = 2.80 kN OK

Use M10 Chemset Anchors (Grade 5.8 Steel) with Epcon C8 Series Epoxy.

Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade 4.6/S

ØN = 18.56 kN OK CDR= 0.49 OK ØV = 9.62 kN OK

Use M10 Grade 4.6/S Steel Bolts with metric round washer per fixing.

(spacing = 400mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset k1 x k3 x Fp x Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry) , Ø=0.7, k1=0.8, k3=1

Using 50x50x5 Square Washers

 $\phi Q = 11.90 \text{ kN (dry)} \text{ OK}$

Use M10 Grade 4.6/S Steel Bolts with 50x50x5 square washers.

(spacing = 400mm max centres)

Chemical Anchoring - ChemSet Anchor Stud Design Calculator European Technical Approval ETA-10/0309

2. Anchor Spacing (a) a = 80 mm c. Concrete Edge Distance (a) c. Concrete Edge Distance (b) c. Cracked Conc. (c) or Non-Cracked (N) c. Cracked Conc. (c) o	European Technical Approval ETA-10/0	309										
Input Description Input Data Input Dat	⚠ Damcot	1	Non-C	racked	Concre	te - EP	CON™		EDCON	20	EDCONE	
Number of anchor (n)	@ naiiisti	Α	ncho	r Type:	An	chor St	ud - Gr	740				
Anchor State End ()				1						F	Project Detail	ls
Concrete (growth of Distance (a) Concrete (cylinder Storage) (FC) Concre	1. Number of anchors (n)	n =	2	-			80 80			Project Na	me:-	
Concrete Cylinder Strength (F)	2. Anchor Spacing (a)	a =	80	mm	<u> </u>	e₁ → ←	a + a	e4 e4	<u></u>			
Consider Conc. (c) or Non-Created (N) N	3. Concrete Edge Distance (e)	e =	50	mm						Project Site	e Address:-	
Content English Discision	4. Concrete Cylinder Strength (f'c)	f'c =	20	MPa								
Design	5. Cracked Conc. (C) or Non-Cracked (N)	C or N	N	-				e= 0	2	Company N	Name:-	
	6. Effective Depth (h>6xdh)	h =	120	mm								
Description Committee Co		d _b =	10	mm			- 🕁	$\dot{\rightarrow}$		Design Ide	ntification:-	
Design Red. UIL CONC. Treatic Capacity Mov. = 2.8 NV		_		mm		Ψ	Ψ	Ψ 1				
10. or y note (y) or with mote (w) 0. or y				row			Load V*	e = 50		Date:-		
12. Anchor Stud Grade (1.8, 8.8, 316 53)					4	or unionor,		- +				
18. Fetruce Philohoses (f)					Ch	emSet™ Ar	nchor Stud "	Specification	n"	١		
M. Effective Length (L.) L. = 125									pur ou	-	•	1"
15. Design Francisic Load-per anchor (N°)	• • • • • • • • • • • • • • • • • • • •				Special	Length - Use	lyp Thr'd	коа Gr 8.8	or Diff.Size	P:		oor
16. Design Shear Load per another (V*)					Hole Diam	eters (mm)	Capacit	y Reduction	Factors			
17. Direction of Shear design load (a)					Drill d	12	Concr	ete Tension & -	0.56		caigii Luad -	4
B. Service Temperature ("C)								-		Xa.		
Output Description Output Data Generalization Output Data Generalization Superalization Superalization Output Data Generalization Output Data Outp					i sixure u _f =			•		*	α = 180° - away	from edge
DESIGN O.K. MM. CRITTERA for a c 8 h - O.K. Des. Red. UII. CONC. Tensile Capacity ⊕N _w = 33.5 kN Red. Char. UII. STEEL Tensile Capacity ⊕V _w = 2.8 kN Red. Char. UII. STEEL Shear Capacity ⊕V _w = 14.1 kN Design Red. UII. Tensile Capacity ⊕N _w = 2.7 kN Tension Design Check N°/PN _w = 0.35 < 1 SHERR O.K. Design Red. UII. Shear Capacity ⊕V _w = 0.35 < 1 COMBINED TENSION SHEAR C.K. Combined Check - N°/PN _w = 0.35	Output Description	0	utput Dat	a			ion View - G	eneric	0.0		Inchor Loade	·d
Des. Red. Uhr. CONC. Tensile Capacity				& h - O.K.		D	N* T	ensile Desi	gn Load			
Red. Char. Ult. STEEL Pensile Capacity		ı	-				↑ "	per anchor)		"E" <u>A</u>	nchor end of a i	<u>row</u>
Page	· · ·				103			Fixtur				•
Red. Char. UII. STEEL Shear Capacity						!!!	!					
Drill hole diameter	· · · · · ·				3100	1 1	Ì	/ t= !	i		š() \$ 5	
TENSION O.K. Design Red. Ult. Tensile Capacity							1, 050	_			0	
Design Red. Ult. Tensile Capacity			12	mm				- t	1			
Tension Design Check	TENSION O	TENSION O.K.										
Shear O.K. Design Red. Ult. Shear Capacity Design Red. Ult. Ult. Shear Capacity Design Red. Ult. Shear Capacity Design Red. Ult. Shear Capacity Design Red. Ult. Shear Capacity Design Reduced Ultimate tensile Capacity Design Reduced Ulti	Design Red. Ult. Tensile Capacity	фN _{ur} =	22.7	kN		UU	U	h = 1	20			
Design Red. UIt. Shear Capacity	Tension Design Check	N*/φN _{ur} =	0.35	<1		i i	i					
Design Red. UIt. Shear Capacity	SHEAR O.	K .				i i	i		Thickness	"I" <u>And</u>	chor internal to	a row
Shear Design Check		T	20	LNI.		i i	į				•	
COMBINED TENSION SHEAR O.K. Combined Check - N"/\(\rho_W_+ + V^* \rho_W = 0.71 \) < 1.2 1.2 1.2 1.8 2.0 2.4 3.0 3.6						Anchor				п		п
Combined Check - N* / ¢N _w + V* / ¢V _w = 0.71	-			- '1	Distance	• -	Spacing Dista	ince		38.00		
Anchor Size A	***************************************					-						1.00
Dell hole dismeter G,												
Sitessed Area												
which Stud Yield Strength												
Red Char. UII. Steel Tensile Capacity	Anchor Stud Yield Strength											
Edge distance for no conc.cone reduction e_c (mm) 35 40 50 65 80 100 NIA NIA	Red.Char. Ult. Steel Tensile Capacity						-					
Anchor spacing for no conc.cone reduction A _c (mm) 50 60 75 100 120 145 N/A N/A	Red.Char. Ult. Steel Shear capacity			(kN)	8.9	14.1	21.0	39.7	59.9		N/A	N/A
Design Reduced Ultimate tensile capacity \(\operatorname{\tensile} \) (RN N/A	Edge distance for no conc.cone reduction											1
Design Reduced Ultimate tensile capacity \(\pi_{N_{tr}} \) (kN per anchor)							<u> </u>					
Based on edge distance (e _c) and anchor spacing (a _c) for no conc.cone reduction	Absolute Minimum edge dist. & and r spac.	e _m & a _m		11111)	25					1		N/A
60 (mm) 10.5	Effective Deptl	n-h			Based							duction
11.9	60		(mm)		o u	(-c)	1	, (,		
70												
90 (mm) 14.3 19.3 19.3 19.3						13.2						
100 (mm) 14.3 22.6 22.6 22.6												
110 (mm) 14.3 22.7 26.1 26.1				•								
125 (mm) 14.3 22.7 31.6 31.6 31.6							1	20.4				
140 (mm) 14.3 22.7 33.8 37.5				•			-					
150 (mm) 14.3 22.7 33.8 41.6 41.6 16 160 (mm) 14.3 22.7 33.8 45.8 45.8 45.8 45.8 170 (mm) 14.3 22.7 33.8 50.1 50.1 50.1 50.1 180 (mm) 14.3 22.7 33.8 50.1 50.1 50.1 50.1 50.1 180 (mm) 14.3 22.7 33.8 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1												
170 (mm) 14.3 22.7 33.8 50.1 50.1 50.1 1 180 (mm) 14.3 22.7 33.8 54.6 54.6 54.6 54.6 190 (mm) 14.3 22.7 33.8 59.2 59.2 59.2 N/A 190 (mm) 14.3 22.7 33.8 59.2 59.2 59.2 N/A 220 (mm) 14.3 22.7 33.8 64.7 73.8 73.8 N/A 240 (mm) 14.3 22.7 33.8 64.7 84.1 84.1 N/A N/A 270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 330 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 135.6 N/A N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 141.3 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset** Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.						22.7			41.6			
180 (mm) 14.3 22.7 33.8 54.6 54.6 54.6 NIA 190 (mm) 14.3 22.7 33.8 59.2 59.2 59.2 NIA 220 (mm) 14.3 22.7 33.8 64.7 73.8 73.8 NIA 240 (mm) 14.3 22.7 33.8 64.7 84.1 84.1 NIA NIA 270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 NIA NIA 330 (mm) 14.3 22.7 33.8 64.7 97.6 135.6 NIA NIA The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset** Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.												
190 (mm) 14.3 22.7 33.8 59.2 59.2 69.2 N/A 220 (mm) 14.3 22.7 33.8 64.7 73.8 73.8 N/A 240 (mm) 14.3 22.7 33.8 64.7 84.1 84.1 N/A N/A 270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 330 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramseet** Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.												
220 (mm) 14.3 22.7 33.8 64.7 73.8 73.8 N/A 240 (mm) 14.3 22.7 33.8 64.7 84.1 84.1 N/A N/A 270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 330 (mm) 14.3 22.7 33.8 64.7 97.6 135.6 N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 141.3 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset™ Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.											NI/A	
240 (mm) 14.3 22.7 33.8 64.7 84.1 84.1 N/A N/A 270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 330 (mm) 14.3 22.7 33.8 64.7 97.6 135.6 N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 141.3 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset™ Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.												
270 (mm) 14.3 22.7 33.8 64.7 97.6 100.4 N/A N/A 330 (mm) 14.3 22.7 33.8 64.7 97.6 135.6 N/A N/A 350 (mm) 14.3 22.7 33.8 64.7 97.6 141.3 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset™ Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.												N/A
350 (mm) 14.3 22.7 33.8 64.7 97.6 141.3 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset** Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.												
The design engineer should ensure the structural element is capable of supporting these loads. Refer to Ramset* Specifiers Anchoring Resource Book ANZ for more information or explanation of Tech. Data.	330		(mm)	14.3	22.7	33.8	64.7	97.6	135.6	N/A	N/A
			,									
11 W. Australia Pty. Ltd. ABN 63 004 235 063 trading as Ramset™. © Copyright 2015	The design engineer should ensure the struct								tor more inforn	mation or explana	ation of Tech. Data	a.
		r	w Australia	rty. Ltd. ABN 63	ou4 235 063 tra	uing as Ramset	⊌ Copyright	2015				

BASE FIXINGS FOR EXTERNAL BALUSTRADE

- For Occupancy types B, C3

- For Up to max "Very High" Wind

Maximum Tributary Spacing of Fixings = 400 mm

Number of row of base fixings per panel = 3

		1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.3 kN
	C3 loading	1.5Q2:	1.5 x 0.75kN/m x trib spacing =	0.45 kN
		1.5Q3:	1.5 x 1.0kPa =	1.5 kPa
(V.H)	Wind - external	Wuls:	0.6 x 50 x 50 /1000 x 1.3 =	1.95 kPa

1100 mm Max

Deck Level

100 mm Max

mm

Tension Forces (central bolts)

		11	12	
1.5Q1:	N*/anchor =	4.80	4.50	kΝ
1.5Q2:	N*/anchor =	7.20	6.75	kΝ
1.5Q3:	N*/anchor =	6.14	5.36	kΝ
Wuls:	N*/anchor =	7.98	6.97	kΝ
		•	•	-

T2

Max N*/anchor = 7.98 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.316 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.24 kN

1.2G: $V^*/anchor = 0.56 \text{ kN}$

A. Fixing to Concrete

Refer to page 10 for design calculations.

Anchor Spacing= 80mm Concrete Strength, f'c = 20MPa min
Concrete Edge Dist= 50mm min Considered as NON-Cracked Concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 16.80 kN OK CDR= 0.67 < 1.2 OK ØV = 2.80 kN OK

Use M10 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy.

Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = 27.20 kN OK CDR= 0.24 OK ØV = 17.86 kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

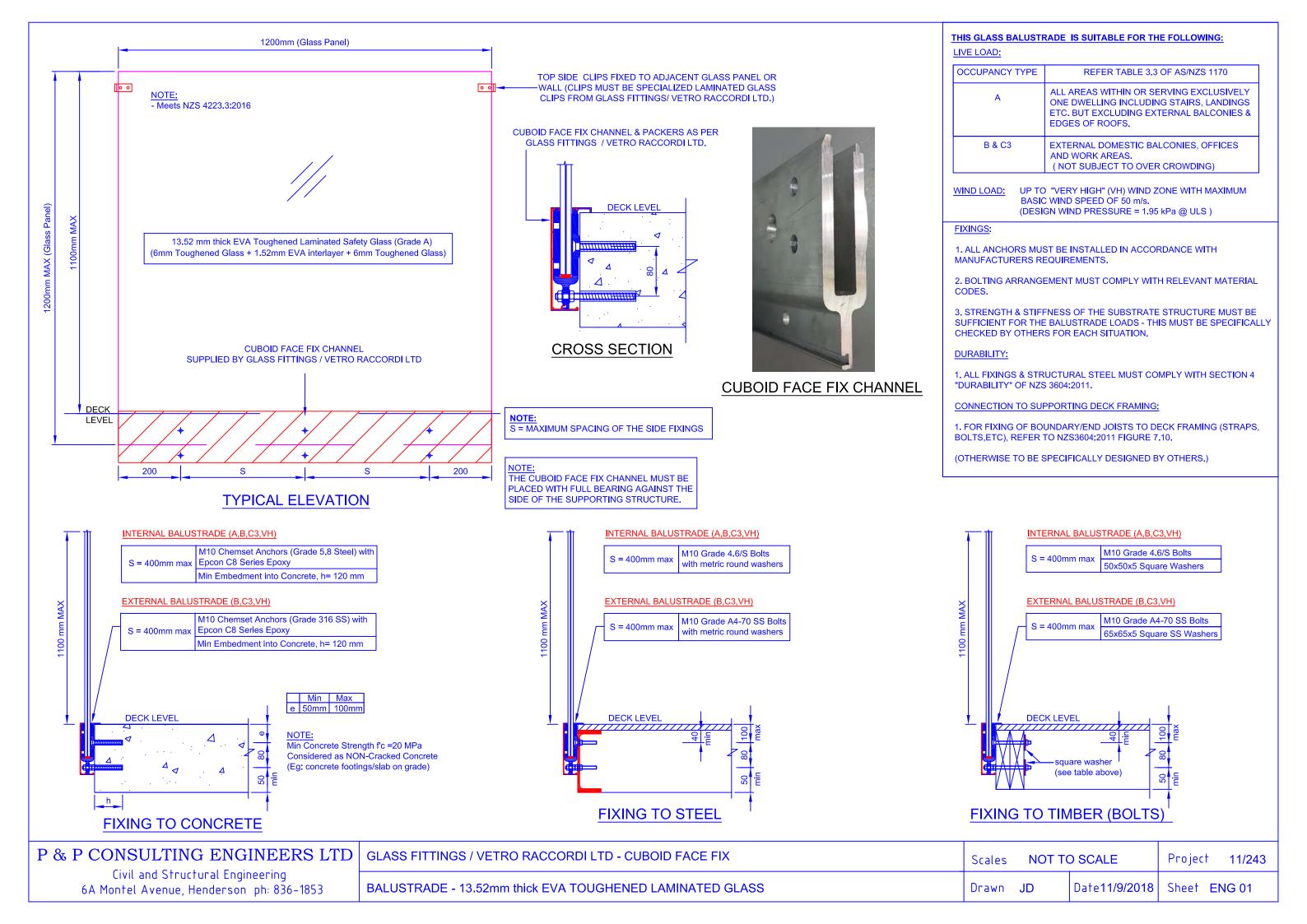
(spacing = 400mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset k1 x k3 x Fp x Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), $\emptyset = 0.7$, k1 = 0.8, k3 = 1

Using 65x65x5 Square S/S washer


 $\phi Q = 12.20 \text{ kN (wet)} OK$

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 65x65x5 Square S/S washers.

(spacing = 400mm max centres)

Chemical Anchoring - ChemSet Anchor Stud Design Calculator European Technical Approval ETA-10/0309

Ramset [™]	1	lon-C	гаскеа	Concre	LC - LI	CON™		EPCONT	20	EPCON C	Q I
W nambet	Δ	ncho	r Type:	An	chor St	ud - Gr	1400	Ancho		$d_b = M$	
Input Description (Strength Limit State Design)	Input Data (per anchor)			Plan View - Generic Dimensions in (mm)				Project Details			
1. Number of anchors (n)	n =	2	-	1.0	50 e₁ → +	80 80 a + 4 a	50		Project Na	me:-	
2. Anchor Spacing (a) 3. Concrete Edge Distance (e)	a = e =	80 50	mm mm			<u> </u>	1		Droject Site	e Address:-	
4. Concrete Cylinder Strength (f'c)	e = f'c =	20	MPa						Project Site	e Address:-	
5. Cracked Conc. (C) or Non-Cracked (N)	C or N	N	-				e= 0	5	Company N	Name:-	
6. Effective Depth (h>6xdh)	h =	120	mm								
7. Anchor Stud size (d _b) - M8 → M36	d _b =	10	mm		 		<u> </u>		Design Ide	ntification:-	
8. Concrete Edge Distance Corner (e1)	e ₁ =	50	mm		Ψ	• •	Ψ <u></u>				
9. Internal to a row (I) or end of row (E)	I or E	E	row		hear Design er anchor)	Load V*	e = 50	2	Date:-		
10. Dry Hole (D) or Wet hole (W)	D or W	W	-	u-	per anichor)		<u> </u>				
11. Min Concrete Sub'te Thickness (b _m) 12. Anchor Stud Grade (5.8, 8.8, 316 SS)	b _m =	150 316	mm SS	ChemSet™ Anchor Stud "Specification"					EPCON™ C8 "Specification"		
13. Fixture Thickness (t)	Grade =	5	mm	Special	Length - Use	Typ Thrid	Rod	or Diff.Size		C8-450	
14. Effective Length (L _p)	L _e =	125	mm	эресіаі	Length - Ose	: туртпі ц	Rou	OI DIII.3iZe	Dir	rection of She	ear
15. Design Tensile Load-per anchor (N*)	N* =	8	kN	Hole Diam	eters (mm)	Capacit	y Reduction	Factors		esign Load -	
16. Design Shear Load-per anchor (V*)	V* =	1	kN	Drill d _h =	12	Concr	ete Tension φ =	0.56	Daywoo		
17. Direction of Shear design load (α)	α = 0 °			Fixture d _f =	Fixture $d_f = 12$ Concrete Shear $\phi = 0.6$				$\alpha = 0^{\circ}$ - towards edge $\alpha = 180^{\circ}$ - away from edge		
18. Service Temperature (°C)	-40°C to +40°C -			Steel Tension/Shear φ = 0.8							
Output Description (Strength Limit State Design)	Output Data (per anchor)			Elevation View - Generic Dimensions in (mm)					Anchor Loaded		
DESIGN O.K.	MIN. CRIT	ERIA for a,e	& h - O.K.		·		ensile Desi per anchor)		"E" A		
Des. Red. Ult. CONC. Tensile Capacity					1 (Joseph Miller)					nchor end of a r	<u>ow</u>
Red. Char. Ult. STEEL Tensile Capacity	φN _{us} =	23.8	kN	Anchor			Fixtur Thicks				
Des. Red. Ult. CONC. Shear Capacity	φV _{urc} =	2.8	kN	Stud		sh	t= !		Q 72	xi	0:: 54
Red. Char. Ult. STEEL Shear Capacity	φV _{us} =	17.0	kN) 1950 1953	0.00			``○		100
Drill hole diameter	d _h =	12	mm				-	<u>†</u>		: G 1	T (P)
TENSION O	.K.						Effect Depti				
Design Red. Ult. Tensile Capacity φN _{ur} = 16.8 kN				ŲŲ	<u> </u>	h = 1	20				
Tension Design Check	N*/φN _{ur} =	0.48	< 1		!!	į		Minimum Substrate			
SHEAR O.I	K.				1 1			Thickness bm = 150	"I" <u>And</u>	chor internal to	a row
Design Red. Ult. Shear Capacity	φV _{ur} =	2.8	kN		<u>i i</u>			<u> </u>			
Shear Design Check	V*/φV _{ur} =	0.35	<1	Corner Edge Distance		Anchor Edge Spacing Dista					- 10 mm
COMBINED TENSION	I SHEAR O	.K.		e ₄	+ 	a 6			``. !	8):\ *\\\\	10 0
Combined Check - N*/фN _{ur}	+ V*/φV _{ur} =	0.83	< 1.2	50	80	80 5	0		10/ 11/1		100
Anchor Size	d _b		etric	8	10	12	16	20	24	30	36
Drill hole diameter Stressed Area	d _h		mm)	10			18	24	26	N/A	N/A
ou occou ni ca	- Ab	/-	mm²)		12 53	14	15/	222	227		NI/A
Anchor Stud Yield Strength	f _y		mm²) MPa)	33 450	12 53 450	79 450	154 450	232 450	337 450	N/A N/A	N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity		(1	MPa) (kN)	33	53	79 450 35.3		450 104.6	450 151.4	N/A N/A	N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity	f _y φN _{us} φV _{us}	(1	MPa) (kN) (kN)	33 450 14.9 10.7	53 450 23.8 17.0	79 450 35.3 25.3	450 69.3 49.6	450 104.6 74.9	450 151.4 108.5	N/A N/A N/A	N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction	f_y ϕN_{us} ϕV_{us} e_c	(1	MPa) (kN) (kN) mm)	33 450 14.9 10.7 35	53 450 23.8 17.0 40	79 450 35.3 25.3 50	450 69.3 49.6 65	450 104.6 74.9 80	450 151.4 108.5 100	N/A N/A N/A N/A	N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity	f _y φN _{us} φV _{us}	(1	MPa) (kN) (kN)	33 450 14.9 10.7	53 450 23.8 17.0	79 450 35.3 25.3	450 69.3 49.6	450 104.6 74.9	450 151.4 108.5	N/A N/A N/A	N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1	MPa) (kN) (kN) mm)	33 450 14.9 10.7 35 50 25	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ul	450 69.3 49.6 65 100 50	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac.	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1	MPa) (kN) (kN) mm)	33 450 14.9 10.7 35 50 25	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ul	450 69.3 49.6 65 100 50	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Deptt 60 65	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1)	MPa) (kN) (kN) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 5.9	53 450 23.8 17.0 40 60 30 Design F on edge d	79 450 35.3 25.3 50 75 35 Reduced Ul	450 69.3 49.6 65 100 50	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Deptt	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1)	MPa) (kN) (kN) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ul	450 69.3 49.6 65 100 50	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1)	MPa) (kN) (kN) mm) mm) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6	53 450 23.8 17.0 40 60 30 Design F on edge d	79 450 35.3 25.3 50 75 35 Reduced Ul	450 69.3 49.6 65 100 50	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Red. Char. Ult. Steel Shear capacity Anchor spacing for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90 100	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$	(1)	MPa) (kN) (kN) mm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7	53 450 23.8 17.0 40 60 30 Design F on edge d	79 450 35.3 25.3 50 75 35 Reduced Ui stance (e _c)	450 69.3 49.6 65 100 50 timate tens and ancho	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) kN) kN) mmn) mmn) mmn) mmn) mmn) mmn) mmn) mm	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2	53 450 23.8 17.0 40 60 30 Design F on edge d	79 450 35.3 25.3 50 75 35 Reduced UI stance (e _c) 9.7 11.3 13.0	450 69.3 49.6 65 100 50 timate tensa and ancho	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Deptt 60 65 70 80 90 100 110	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) mm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7	53 450 23.8 17.0 40 60 30 Design F on edge d	79 450 35.3 25.3 50 75 35 Reduced Ui stance (e _c)	450 69.3 49.6 65 100 50 timate tens and ancho	450 104.6 74.9 80 120 60	450 151.4 108.5 100 145 75 y \(\phi \) \(\phi \) \(\phi \) \(\phi \)	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90 100 1110 125 140	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8	79 450 35.3 25.3 50 75 35 Reduced Ut stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	450 69.3 49.6 65 50 50 timate tens and ancho 13.0 15.8 18.7 20.8	450 104.6 74.9 80 120 60 ile capacity r spacing (450 151.4 108.5 100 145 75 7 \text{oN}_{ur} (kN p a_c) for no co	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Anchor spacing for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90 100 110 125	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 11.3 13.0 15.8 18.7 20.8 22.3	79 450 35.3 25.3 50 75 35 Reduced Uistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	450 69.3 49.6 65 100 50 timate tens and ancho 13.0 15.8 18.7 20.8	450 104.6 74.9 80 120 60 ile capacity r spacing (450 151.4 108.5 100 145 75 7 PN _{ur} (kN p a _c) for no c	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red Char. Ult. Steel Tensile Capacity Red Char. Ult. Steel Tensile Capacity Red Char. Ult. Steel Shear capacity Red	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8	79 450 35.3 25.3 50 75 35 Reduced Ut stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	450 69.3 49.6 65 50 50 timate tens and ancho 13.0 15.8 18.7 20.8	450 104.6 74.9 80 120 60 ile capacity r spacing (450 151.4 108.5 100 145 75 7 \text{oN}_{ur} (kN p a_c) for no co	N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Red. Red. Red. Red. Red. Red. Red. Red.	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.7 23.8	79 450 35.3 25.3 50 75 35 Reduced UI stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6	450 69.3 49.6 65 100 50 timate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6	450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6	450 151.4 108.5 100 145 75 75 9 \(\text{NV}_{ur} \) (kN \(\text{p} \) a_c) for no color	N/A N/A N/A N/A N/A N/A N/A N/A OCCOPE TEC	N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Red. Red. Red. Red. Red. Red. Red. Red.	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.7 23.8	79 450 35.3 25.3 50 75 35 Reduced Ut stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 35.3	450 69.3 49.6 65 100 50 timate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 36.9	450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 29.6 36.9	450 151.4 108.5 100.5 145 75 y \(\text{ON}_{ur} \) (kN \(\text{p} \) a_c) for no color of the	N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 1110 125 140 150 160 170 180 190	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 13.0 12.3 23.7 23.8 23.8 23.8	79 450 35.3 25.3 50 75 35 Reduced Uistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 26.1 27.3 29.6 35.3 35.3	450 69.3 49.6 69.5 100 50 timate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6	450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6 36.9	450 151.4 108.5 100 145 75 75 9 \(\text{NV}_{ur} \) (kN \(\text{p} \) a_c) for no color	N/A N/A N/A N/A N/A N/A N/A N/A OCCOPE TEC	N/A N/A N/A N/A N/A N/A N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Anchor spacing for no conc.cone reduction Ahsolute Minimum edge dist. & anc'r spac. Effective Depth 60 65 70 80 90 100 110 125 1440 150 160 170 180 190 220 240	$\begin{array}{c} f_y \\ \varphi N_{us} \\ \\ \varphi V_{us} \\ \\ e_c \\ \\ a_c \\ \\ e_m \& a_m \end{array}$		MPa) (kN) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.7 23.8	79 450 35.3 25.3 50 75 35 Reduced Ut stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 35.3	450 69.3 49.6 65 100 50 timate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 36.9	450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 29.6 36.9	450 151.4 108.5 100 145 75 7	N/A	N/A
Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Deptt 60 65 70 80 90 100 110 110 125 140 150 160 170 180 190 220 240 270	f _y ΦN _{cs} Φν _{cs} Φν _{cs} e _c a _c e _m & a _m		MPa) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	33 450 14.9 10.7 35 50 25 Based 5.3 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge d 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.8 23.8 23.8 23.8 23.8 23.8 23.8	79 450 35.3 25.3 25.3 50 75 35 8educed UI stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 35.3 35.3 35.3 35.3	450 69.3 49.6 65 100 50 timate tens and ancho 13.0 15.8 18.7 20.8 22.9 36.9 42.0 50.2 67.8 69.3	450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6 36.9 42.0 50.2 67.8 74.1	450 151.4 108.5 100 145 75 75 9 \(\text{NV}_{ur} \) (kN \(\text{p} \) a_c) for no color	N/A	N/A

