P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ

Dr. H.D.W. FENDALL (Consultant) B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ 6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds32.v2 28 March 2024

FMI Building Innovation Ltd / Vetro Raccordi

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE / POOL FENCE

<u>USING CUBOID FACE FIX SYSTEM &</u> 15.52mm thick EVA TOUGHENED LAMINATED GLASS

Note: Overall Glass Height = 1315mm max

	INDEX	PAGE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade/pool fence had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B and C3.	
	The glass balustrade/pool fence had also been tested for max "Very High" wind load.	
3.	Load Tests	3
4.	Tests Arrangement & Results	4
4.1	Balustrade/ Pool Fence	4
	Based on the testing, the glass balustrade/pool fence which comprised of 15.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 8mm Toughened) supported by Cuboid Face Fix System with top side clips was sufficient for the following:	
	Occupancy types A, B, C3Up to max "Very High" Wind	
5.	Testing to Demonstrate Compliance of Structural Glass Barrier witho an Interlinking Rail	<u>out</u> 6
	Based on the testing, the 15.52mm thick EVA Toughened Laminated Grad Safety Glass (6mm Toughened + 1.52 EVA interlayer + 8mm Toughened) supported by Cuboid Face Fix System with top side clips had complied wit load and deflection requirements of Acceptable Solution B1/AS1 Clause 7. (Amendment 15).	th the
6.	Assessment of slightly higher Glass Balustrade	7
	The overall height of glass balustrade has been slightly increased to 1 (from 1300mm). Calculations for review were made to see whether the increase and deflections are still acceptable.	

As shown in the summary table on page 8, the stress and deflections have increased only by less than 5%. This was checked and noted to be satisfactory.

Therefore, the test results from report DS32 can be used for this slightly higher glass balustrade. Base fixings need to be redesigned – refer to section 7.

Refer to pages 9 - 23 for design calculations.

Refer to Summary Drawing ENG 01 – 03 for reference.

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by FMI Building Innovation Ltd / Vetro Raccordi.

Building Code Clause(s).B1,F2,F4,F9

PRODUCER STATEMENT - PS1 - DESIGN

(Guidance on use of Producer Statements (formerly page 2) is available at www.engineeringnz.org)

ISSUED BY:	P & P CONSULTING E	NGINEERS LTD		
		(Design Firm)		
то:	FMI Building Innovation	Ltd / Vetro Raccordi		
		(Owner/Developer)		
TO BE SUPPLIED TO:	VARIOUS	(Decilation Conservation Academic	4\	
CLACC		(Building Consent Authori		AVA TOLICLIENED LAMINATED
		(Description of Building We	ork)	VA TOUGHENED LAMINATED
AT: VARIOUS SITES (Oc	ccupancy Type A,B,E,C3	and Up to max "Very (Address)	High" Wind)	
Town/City:	(Address)			\$0
We have been engaged by	the owner/developer re	ferred to above to prov	ride:	
GLASS TESTING REVIE	W AND DESIGN FOR BA	ASE FIXING		
		(Extent of Engagement	•	
services in respect of the r	equirements of Clause(s).B1, F2, F4 , F9	of the Building Co	de for:
☐ All or ■ Part only (as	specified in the attachm	ent to this statement),	of the proposed building	g work.
The design carried out by	us has been prepared in	accordance with:		
Compliance Documents	s issued by the Ministry	of Business, Innovation	a & Employment(verification	1or on method/acceptable solution)
Alternative solution as p	per the attached schedul	e		
The proposed building wor	k covered by this produc	er statement is describ	oed on the drawings title	ed:
FMI LTD / VETRO RACCO				3/DS32.v2, DRWG ENG01-03 ement.
On behalf of the Design I (i) Site verification of the fo (ii) All proprietary products	llowing design assumpti	ons REFER NOTES A	T THE END OF DESIG	SN SUMMARY
documents provided or list	ed in the attached sched ertaken the design have	lule, will comply with th	e relevant provisions of	vings, specifications, and other f the Building Code and that b), commend the following level of
□СМ1 □СМ2 □СМ3	B CM4 CM5 (Eng	gineering Categories) Or	as per agreement with	owner/developer (Architectural)
(Name of L	Design Professional)			Reg Arch#
I am a member of: Engi The Design Firm issuing the The Design Firm is a mem	is statement noi <u>ds</u> a curre	NZIA and hold the for ent policy of Profession	ollowing qualifications: al Indemnity Insurance r	BE(Civil), CPEng no less than \$200,000*.
SIGNED BY. Parmil Prakas	sh (Name of Design Pro	ofessional)	(Signature)	Office
ON DEHALE OF	P & P CONSULTING	G ENGINEERS LTD		Date
ON BEHALF OF	(Design Firm			Date

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

PRODUCER STATEMENT PS1 October 2013 (PDF)

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

NZS 4223.3:2016 Glazing In Buildings AS/NZS 1170:2002 Loadings Code NZS 3404:1997 Structural Steel NZS 3101:1995 Concrete NZS 3603:1993 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

Occupancy	Specific Uses	Top E	dge	<u>Infill</u>
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa
B & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN

Wind Loads (VERY HIGH)

Design for Very High Winds in terms of the Wind Speed categories in NZS 3604:2011 (up to 50 m/s).						
$V_{sit,\beta}(Ultimate)$	=	50.0	m/s			
$V_{sit,\beta}$ (Serviceability)	=	37.3	m/s			
•						
q	=	1.50	kPa (ULS)			
and	=	0.83	kPa (SLS)			
For external barriers us	se Cp =	1.30				
For internal barriers use Cp =		0.30				
Wind Load = q x	(Cp =	1.95	kPa (ULS)			
	=	1.08	kPa (SLS)			

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

3. LOAD TESTS

<u>Location of Tests</u>: 49 Woodside Avenue, Auckland

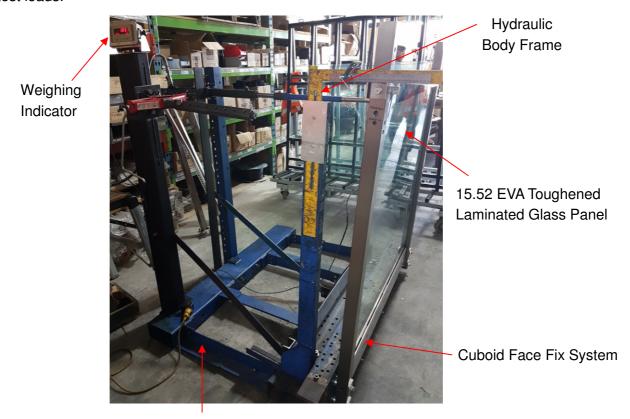
<u>Date of Tests</u>: August 2018

<u>Test Description</u>: Load testing of Glass Balustrade/Pool Fence

Panel Tested = 1200mm wide x 1300mm high glass panel,

1200mm finished height from FFL

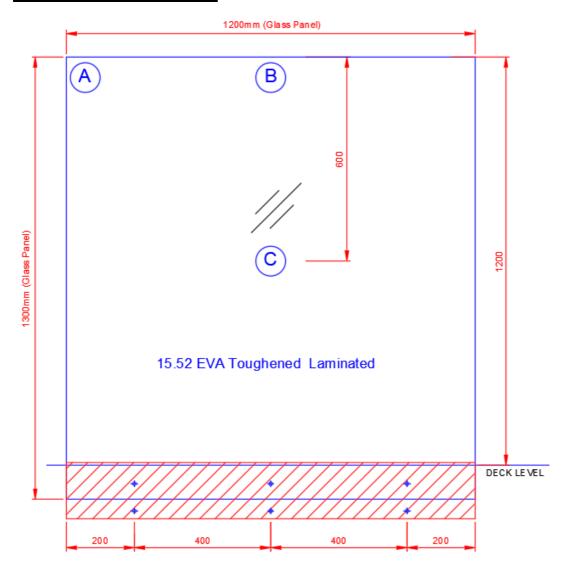
System Description: The glass balustrade/pool fence which was supplied by FMI Building


Innovation Ltd / Vetro Raccordi, comprised of 15.52mm thick EVA Toughened Laminated (Grade A) Safety Glass (6mm Toughened + 1.52mm EVA Interlayer + 8mm Toughened), top side clips fixed to side

posts and Cuboid Face Fix System.

Setup / Procedure:

The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with Cuboid Face Fix system. This channel system was bolted to the steel frame assembly with M10 fixings as shown below. The glass panel was also clipped at each side to the supporting posts acting as the supporting neighboring glass panels.


The hydraulic body frame/ram and load cell or weighing indicator were used to attain the required test loads.

Steel Frame Assembly

4. TESTS ARRANGEMENT & RESULTS

4.1 BALUSTRADE/ POOL FENCE

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

TEST RESULTS (Fracture Check)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122.0	16	No Fracture
В	183.0	16	No Fracture
С	412.4	16	No Fracture

TEST RESULTS (Deflection Check)

Tooto	Target Load	Deflec	Remarks		
Tests	@ SLS (Kg)	Sample 1	Sample 2	Sample 3	nemarks
Α	61.2	16	16	17	Passed
В	91.7	16	17	16	Passed
С	172.4	13	13	12	Passed

Allowable Deflection = H/30 = 40.0 mm

Based on the testing, the glass balustrade/pool fence which comprised of 15.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 8mm Toughened) supported by Cuboid Face Fix System with top side clips was sufficient for the following:

- > Occupancy types A, B, C3
- ➤ Up to max "Very High" Wind

5. <u>Testing to Demonstrate Compliance of Structural Glass Barrier without an Interlinking Rail</u>

The toughened laminated glass panel had also been tested in accordance with the requirement of Acceptable Solution B1/AS1 Clause 7.3.1 (Amendment 15).

According to this clause, to demonstrate compliance with this requirement, the toughened laminated safety glass barrier without interlinking rails, when both panes of the laminate are fractured, must resist a 0.2 kN concentrated load and must not deflect more than 250mm. The concentrated load shall be applied over an area of 100mm x 100mm and for at least one minute.

The following were used in this testing (see photo below):

- ➤ 15.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 8mm Toughened)
- with top side clips fixed to side posts
- Cuboid Face Fix System

Hydraulic
Body Frame

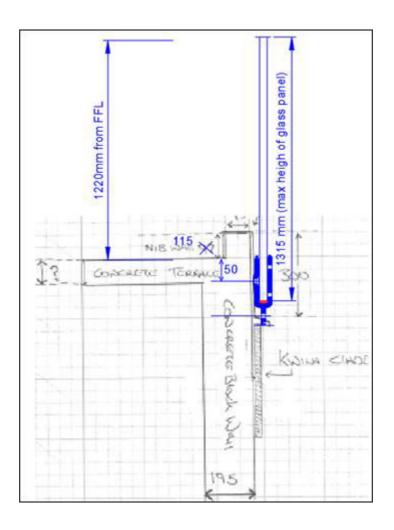
Laminated Glass Panel

15.52 EVA Toughened

<u>Procedure:</u> Both panes of the laminate were fractured first and then a 20kg was applied at the top center location of the glass panel using the hydraulic ram.

The test load and deflection were recorded as follows:

Load applied	Deflection at Top (after 1 minute load)	
20 kg	70mm < Allowable (250mm)	~ OK


Based on the testing, the 15.52mm thick EVA Toughened Laminated Grade A Safety Glass (6mm Toughened + 1.52 EVA interlayer + 8mm Toughened) supported by Cuboid Face Fix System with top side clips had complied with the load and deflection requirements of Acceptable Solution B1/AS1 Clause 7.3.1 (Amendment 15).

6. Assessment of slightly higher Glass Balustrade

The overall height of glass balustrade has been slightly increased to 1315 mm (from 1300mm). Calculations for review were made to see whether the increase in stress and deflections are still acceptable.

The following are the design parameters and considerations used in this design check:

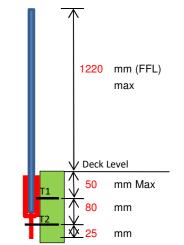
- > test report DS32 was used as the basis of the calculations
- overall glass height = 1315 mm (from 1300 mm)
- ➤ height from FFL = 1220 mm
- setup of fixings as shown below:
 -top concrete edge distance for top fixings = 50 mm from bottom side of nib wall
- horizontal spacing of fixings = 300 mm max
- > 190 mm thick masonry wall with concrete strength of 20 MPa minimum
- \triangleright side thickness of masonry shells = 35 40 mm (assumed)

The following are the results of the design check:

Stresses (ULS)			
Load Case	Stress new / Stress old	% increase	
1.5Q	1.012	1.15%	
Wuls	1.023	2.32%	

Deflection (SLS)				
Load Case	Deflection new / Deflection old	% increase		
Q	1.035	3.50%		
Wsls	1.047	4.70%		

As shown above, the stress and deflections have increased only by less than 5%. This was checked and noted to be satisfactory.


Therefore, the test results from report DS32 can be used for this slightly higher glass balustrade. Base fixings need to be redesigned – refer to section 7.

7. Design of Base Fixings

mm

Maximum Tributary Spacing of Fixings = 300
Number of row of base fixings per panel = 3

	1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.3	kN
C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.338	kN
	1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
Wind -Very High	Wuls:	0.6 x 50x 50 /1000 x 1.3 =	1.95	kPa

Tension Forces (central bolts)

		11	12	
1.5Q1:	N*/anchor =	5.06	4.76	kΝ
1.5Q2:	N*/anchor =	5.70	5.36	
1.5Q3:	N*/anchor =	5.12	4.51	kΝ
Wuls:	N*/anchor =	6.66	5.86	kΝ

Max N*/anchor = 6.66 kN

ht (Glass finished height from top fixings) =1270mm

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.249 kN1.2 x Weight of Al Channel= $1.2 \times (0.5 \text{ kN/m x spacing})$ = 0.18 kN

1.2G: $V^*/anchor = 0.43 \text{ kN}$

Option 1: Fixing into Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = **27.20** kN OK CDR= 0.20 OK ØV = **17.86** kN OK

Use M10 316 SS (A4-70) Bolts with M10 316 SS Metric Nuts and M10 x 25 OD x 3 SS 316 Metric Round Washers per fixing.

(spacing = 300mm max centres)

Option 2: Fixing into Timber using Engineering Bolts

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset k1 \times k3 \times Fp \times Aw$)

where: \emptyset =0.8, k1=1 (brief), k3=1, Fp = 5.3MPa (wet) or 8.9 Mpa (dry)

Using 50x50 Square Washers 316 SS

 $\phi Q = 10.12 \text{ kN (wet)} \text{ OK}$ $N^*/\phi Q = 0.66 \text{ ok}$

Use M10 316 SS (A4-70) Bolts with M10 316 SS Metric Nuts and 50mm x 50mm x 5mm SS 316 Metric Square Washers per fixing.

(spacing = 300mm max centres)

Option 3: Fixing into Timber using Coach Screws / Lagscrews

As per NZS3603, Timber Group J5, Screws in Withdrawal.($\emptyset Q = \emptyset n k1 K p Qk$)

where: \emptyset =0.7, k1=1 (brief), K=0.7 (wet) or 1 (dry)


Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

<u>Using M10 Coach Screws</u> (spacing = 300mm max centres)

 $\emptyset Q = 52.43 \text{ N/mm (wet)}$ Min Screw Penetration, p= 128 mm (wet) $\emptyset Q = 74.9 \text{ N/mm (dry)}$ Min Screw Penetration, p= 89 mm (dry)

<u>Using M12 Coach Screws</u> (spacing = 300mm max centres)

 $\emptyset Q = 57.82 \text{ N/mm (wet)}$ Min Screw Penetration, p= 116 mm (wet) $\emptyset Q = 82.6 \text{ N/mm (dry)}$ Min Screw Penetration, p= 81 mm (dry)

MINIMUM REQUIREMENTS FOR COACHSCREWS / LAGSCREWS					
Option 1: Using M10 Stainless Steel 316	Minimum Screw Penetration (p) into timber (mm) =	128	external		
		89	internal		
Option 2: Using M12 Stainless Steel 316	Minimum Screw Penetration (p) into timber (mm) =	116	external		
		81	internal		

(spacing = 300mm max centres)

Option 4: Fixing into Masonry Block Wall

Refer to HILTI design calculations sheets (page 12 - 23).

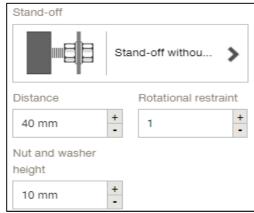
Considered as 190 mm thick masonry wall with concrete strength of 20 MPa minimum Considered as Cracked Concrete

No water standing in the hole (assumed water saturated hole in the design)

Side thickness of masonry shells = 35 - 40 mm

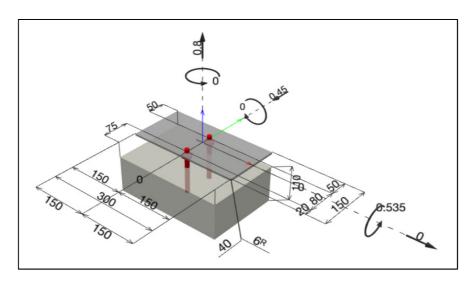
Effective Concrete Wall Thickness (excluding masonry shells) = 190 - 40 - 40 = 110 mm

Anchor Spacing = 300 mm (horizontally) , 80 mm (vertically)


Concrete Edge Distance, ev = 50 mm min (top)

Concrete Edge Side Distance, eh = 150 mm min (corner / end fixings)

Total Embedment into Masonry Wall = 40mm (masonry shell) + 80mm (hef) = 120mm


From Hilti Anchor Design:

₹ ANC	^		
Anchor	N [kN]	Vx [kN]	Vy [kN]
1	-6.438	0	-0.225
2	7.238	0	-0.225

ANC	HOR DESIGN	^
Tension		
- ↑	Steel	23%
•	Concrete breakout	73%
- November 1	Combined pullout and concrete breakout	65%
₩4	Splitting	95%
Shear	^	
\$0 +	Steel	25%
- NAME	Concrete edge breakout	8%
**	Pryout	2%
O	^	
Combina	tion	100%

Use M12 A4 HAS-U (Stainless Steel) Anchors + HILTI HIT-HY 200-R V3 Adhesive. Minimum total embedment into masonry block wall to be 120 mm.

www.hilti.co.nz

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Base Fixing Design - 2 Date: 27/03/2024

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200-R V3 + HAS-U A4 M12

Return period (service life in years): 50

Item number: 2223844 HAS-U A4 M12x160 (element) / 2262131

HIT-HY 200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 80.0 \text{ mm } (h_{ef,limit} = - \text{ mm})$

Material: A4

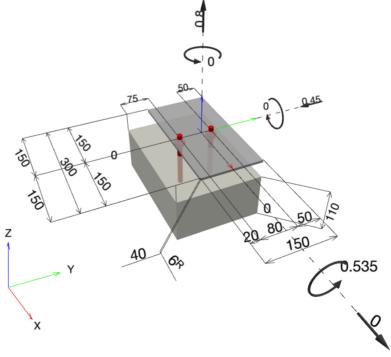
Evaluation Service Report: ETA 19/0601 Issued I Valid: 29/01/2024 | -

Proof: Design Method New Zealand NZS 3101, chapter 17.5.5 – ETAG Design; EOTA TR 029

Stand-off installation: without clamping (anchor); restraint level (anchor plate): 1.00; e_b = 40.0 mm; t = 6.0 mm

Anchor plate R: $l_x \times l_y \times t = 300.0 \text{ mm} \times 150.0 \text{ mm} \times 6.0 \text{ mm}$; (Recommended plate thickness: not calculated)

Profile: no profile


Base material: cracked concrete, C20/25, f_{c,cube} = 25.00 N/mm²; h = 110.0 mm, Temp. short/long: 40/24 °C

Installation: hammer drilled hole, Installation condition: Water saturated

Reinforcement: no reinforcement or reinforcement spacing >= 150 mm (any \emptyset) or >= 100 mm (\emptyset <= 10 mm)

no longitudinal edge reinforcement

Geometry [mm] & Loading [kN, kNm]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

^R - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.co.nz

 Company:
 Page:
 2

 Address:
 Specifier:

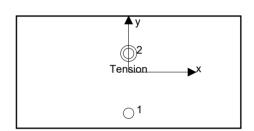
 Phone I Fax:
 E-Mail:

Design: Base Fixing Design - 2 Date: 27/03/2024

Fastening point:

1.1 Load combination

	Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
	1	Combination 1	$N = 0.800; V_x = 0.000; V_y = -0.450;$	no	no	100
			$M_x = 0.535$; $M_v = 0.000$; $M_z = 0.000$;			


2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	-6.438	0.225	0.000	-0.225
2	7.237	0.225	0.000	-0.225

 $\label{eq:max_concrete} \begin{array}{ll} \text{max. concrete compressive strain:} & -\ [\%] \\ \text{max. concrete compressive stress:} & -\ [\text{N/mm}^2] \\ \text{resulting tension force in } (\text{x/y}) = (150.0/100.0) : 7.238 \ [\text{kN}] \\ \text{resulting compression force in } (\text{x/y}) = (0.0/0.0) : 0.000 \ [\text{kN}] \\ \end{array}$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

www.hilti.co.nz

 Company:
 Page:
 3

 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Base Fixing Design - 2 Date: 27/03/2024

Fastening point:

3 Tension load (EOTA TR 029, Section 5.2.2)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel Strength*	7.237	31.556	23	OK
Combined pullout-concrete cone failure**	7.237	11.162	65	OK
Concrete Breakout Failure**	7.237	10.035	73	OK
Splitting failure**	7.237	7.624	95	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

3.1 Steel Strength

$$N_{\text{Sd}} \leq N_{\text{Rd,s}} = \frac{N_{\text{Rk,s}}}{\gamma_{\text{M,s}}}$$
 EOTA TR 029, Table 5.2.2.1

$N_{Rk,s}$ [kN]	$\gamma_{M,s}$	$N_{Rd,s}$ [kN]	N _{Sd} [kN]	
59.010	1.870	31.556	7.237	

www.hilti.co.nz

 Company:
 Page:
 4

 Address:
 Specifier:
 5

 Phone I Fax:
 |
 E-Mail:

 Design:
 Base Fixing Design - 2
 Date:
 27/03/2024

 Fastening point:
 27/03/2024

3.2 Combined pullout-concrete cone failure

$N_{\text{Sd}} \leq N_{\text{Rd}}$	$_{\rm l,p} = \frac{N_{\rm Rk,p}}{\gamma_{\rm M,p}}$	EOTA TR 029, Table 5.2.2.1
$N_{Rk,p}$	$= N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{s,Np} \cdot \psi_{g,Np} \cdot \psi_{ec1,Np} \cdot \psi_{ec2,Np} \cdot \psi_{re,Np}$	EOTA TR 029, Eq. (5.2)
$\begin{matrix} N_{Rk,p}^0 \\ A_{p,N}^0 \end{matrix}$	$= \pi \cdot \mathbf{d} \cdot \mathbf{h}_{ef} \cdot \mathbf{\tau}_{Rk}$ $= \mathbf{s}_{cr, Np} \cdot \mathbf{s}_{cr, Np}$	EOTA TR 029, Eq. (5.2a) EOTA TR 029, Eq. (5.2b)
s _{cr,Np}	$= 20 \cdot d \cdot \left(\frac{\tau_{Rk,ucr}}{7.5}\right)^{0.5} \le 3 \cdot h_{ef}$	EOTA TR 029, Eq. (5.2c)
C _{cr,Np}	$=\frac{s_{cr,Np}}{2}$	EOTA TR 029, Eq. (5.2d)
$\psi_{\text{ s,Np}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}} \le 1.00$	EOTA TR 029, Eq. (5.2e)
$\psi_{g,\text{Np}}$	$= \psi_{g,Np}^{0} - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^{0} - 1\right) \ge 1.00$	EOTA TR 029, Eq. (5.2f)
$\psi_{g,Np}^{0}$	$= \sqrt{n} - (\sqrt{n} - 1) \cdot \left(\frac{d \cdot \tau_{Rk}}{k \cdot \sqrt{h_{ef}} \cdot f_{ck,cube}}\right)^{1.5} \ge 1.00$	EOTA TR 029, Eq. (5.2g)
$\psi_{\text{ ec1,Np}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c1,N}}{s_{cr,Np}}} \le 1.00$	EOTA TR 029, Eq. (5.2h)
$\psi_{\text{ ec2,Np}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c2,N}}{s_{cr,Np}}} \le 1.00$	EOTA TR 029, Eq. (5.2h)
$\psi_{\text{ re,Np}}$	$= 0.5 + \frac{h_{ef}}{200} \le 1.00$	EOTA TR 029, Eq. (5.2i)

$A_{p,N}$ [mm ²]	$A_{p,N}^0$ [mm ²]	$\tau_{Rk,ucr,25}$ [N/mm ²]	s _{cr,Np} [mm]	c _{cr,Np} [mm]	c _{min} [mm]
40,800	57,600	18.00	240.0	120.0	50.0
Ψ c	τ _{Rk,cr} [N/mm ²]	k	$\psi^0_{g,Np}$	$\Psi_{g,Np}$	
1.000	9.50	2.300	1.000	1.000	
e _{c1,N} [mm]	$\psi_{\text{ ec1,Np}}$	e _{c2,N} [mm]	$\Psi_{\text{ec2,Np}}$	$\psi_{s,Np}$	$\Psi_{re,Np}$
0.0	1.000	0.0	1.000	0.825	1.000
$N_{Rk,p}^0$ [kN]	N _{Rk,p} [kN]	$\gamma_{M,p}$	N _{Rd,p} [kN]	N _{Sd} [kN]	
28.651	16.743	1.500	11.162	7.237	

Group anchor ID

www.hilti.co.nz

 Company:
 Page:
 5

 Address:
 Specifier:
 Famil:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Base Fixing Design - 2
 Date:
 27/03/2024

 Fastening point:
 27/03/2024

3.3 Concrete Breakout Failure

$N_{\text{Sd}} \leq N_{\text{Rd}}$	'M,C	EOTA TR 029, Table 5.2.2.1
$N_{Rk,c}$	$= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N}$	EOTA TR 029, Eq. (5.3)
$N_{Rk,c}^0$ $A_{c,N}^0$	$= k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5}$	EOTA TR 029, Eq. (5.3a)
$A_{c,N}^0$	$= s_{cr,N} \cdot s_{cr,N}$	EOTA TR 029, Eq. (5.3b)
$\psi_{\text{ s,N}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EOTA TR 029, Eq. (5.3c)
$\psi_{ \text{re}, N}$	$= 0.5 + \frac{h_{ef}}{200} \le 1.00$	EOTA TR 029, Eq. (5.3d)
$\psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c1,N}}{s_{cr,N}}} \le 1.00$	EOTA TR 029, Eq. (5.3e)
Ψ _{ec2,N}	$= \frac{1}{1 + \frac{2 \cdot e_{c2,N}}{s_{cr,N}}} \le 1.00$	EOTA TR 029, Eq. (5.3e)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]		
40,800	57,600	120.0	240.0		
e _{c1,N} [mm]	$\Psi_{\text{ec1,N}}$	e _{c2,N} [mm]	$\Psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re,N}}$
0.0	1.000	0.0	1.000	0.825	1.000
k	$N_{Rk,c}^0$ [kN]	$\gamma_{M,c}$	N _{Rd,c} [kN]	N _{Sd} [kN]	
7.200	25.760	1.500	10.035	7.237	

Group anchor ID

www.hilti.co.nz

Company: Page: 6
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Base Fixing Design - 2 Date: 27/03/2024
Fastening point:

3.4 Splitting failure

N1 N1	$N_{Rk,sp}$	FOTA TD 000 Table 5 0 0 4
$N_{\text{Sd}} \leq N_{\text{Rd,s}}$	$_{\rm p} = \frac{\gamma_{\rm M,sp}}{\gamma_{\rm M,sp}}$	EOTA TR 029, Table 5.2.2.1
$N_{Rk,sp}$	$\begin{split} &= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{h,sp} \\ &= k_{1} \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5} \\ &= s_{cr,sp} \cdot s_{cr,sp} \end{split}$	EOTA TR 029, Eq. (5.4)
$N_{Rk,c}^0$	$= k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5}$	EOTA TR 029, Eq. (5.3a)
$A_{c,N}^0$	$= s_{cr,sp} \cdot s_{cr,sp}$	EOTA TR 029, Eq. (5.3b)
$\psi_{\text{ s,N}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,sp}} \le 1.00$	EOTA TR 029, Eq. (5.3c)
$\Psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c1,N}}{s_{cr,sp}}\right)} \le 1.00$	EOTA TR 029, Eq. (5.3e)
$\Psi_{\text{ec2,N}}$	$= \frac{1}{1 + \left(\frac{2 \cdot e_{c2,N}}{s_{cs,pp}}\right)} \le 1.00$	EOTA TR 029, Eq. (5.3e)
	$= \left(\frac{h}{h_{\min}}\right)^{2/3}$	EOTA TR 029, Eq. (5.4a)
$1 \leq \psi_{h,sp}$	$= \left(\frac{2 \cdot h_{ef}}{h_{min}}\right)^{2/3}$	EOTA TR 029, Eq. (5.4b)
h _{ef}	$= \max \left(\frac{c_{\text{max}}}{c_{\text{cr,sp}}}, \frac{s_{\text{max}}}{s_{\text{cr,sp}}}\right) \cdot h_{\text{ef}}$	
Α	Λ^0 [mm ²]	Formal NV

$A_{c,N}$ [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,sp} [mm]	s _{cr,sp} [mm]	$\psi_{\text{ h,sp}}$		
61,500	96,100	170.0	340.0	1.000		
h _{ef} [mm]	c _{cr,sp} [mm]	s _{cr,sp} [mm]				
72.9	155.0	310.0	_			
e _{c1,N} [mm]	$\Psi_{\text{ ec1,N}}$	e _{c2,N} [mm]	$\Psi_{\text{ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re},\text{N}}$	k ₁
0.0	1.000	0.0	1.000	0.797	1.000	7.200
N _{Rk,c} [kN]	$\gamma_{M,sp}$	N _{Rd,sp} [kN]	N _{Sd} [kN]			
22.427	1 500	7 624	7 237			

Group anchor ID

www.hilti.co.nz

Company: Page: Address: Specifier: E-Mail: Phone I Fax: Design: Base Fixing Design - 2 Date: 27/03/2024

Fastening point:

4 Shear load (EOTA TR 029, Section 5.2.3)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel Strength (without lever arm)*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	0.225	0.924	25	OK
Pryout Strength**	0.450	24.203	2	OK
Concrete edge failure in direction y-**	0.450	6.374	8	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

4.1 Steel failure (with lever arm)

$$\begin{split} &V_{\text{Sd}} \leq V_{\text{Rd,s}}^{\text{M}} = \frac{V_{\text{Rk,s}}^{\text{M}}}{\gamma_{\text{M,s,b}}} & \text{EOTA TR 029, Table 5.2.3.1} \\ &V_{\text{Rk,s}}^{\text{M}} = \frac{\alpha_{\text{M}} \cdot \text{M}_{\text{Rk,s}}}{1} & \text{EOTA TR 029, Eq. (5.6)} \\ &M_{\text{Rk,s}} = M_{\text{Rk,s}}^{0} \cdot \left(1 - \frac{N_{\text{Sd}}}{N_{\text{Rd,s}}}\right) & \text{EOTA TR 029, Eq. (5.6a)} \\ &I = e_{\text{c}} + \frac{t}{2} + a_{3} & \text{EOTA TR 029, Eq. (4.2)} \end{split}$$

I [mm]	α_{M}		
49.0	1.00		
N_{Sd} / $N_{Rd,s}$	1 - N _{Sd} / N _{Rd,s}	$M_{Rk,s}^0$ [kNm]	$M_{Rk,s} = M_{Rk,s}^0$
0.220	0.771	0.002	
	N _{Sd} / N _{Rd,s}	49.0 1.00 N _{Sd} / N _{Rd,s} 1 - N _{Sd} / N _{Rd,s}	49.0 1.00

N_{Sd} / $N_{Rd,s}$	$1 - N_{Sd} / N_{Rd,s}$	$M_{Rk,s}^0$ [kNm]	$M_{Rk,s} = M_{Rk,s}^{0}$ (1 -	$N_{Sd}/N_{Rd,s}$) [kNm]
0.229 0.771		0.092 0.071		71
$V_{Rk,s}^{M} = \alpha_{M}^{*}$	M _{Rk,s} / I [kN]	$\gamma_{Ms,b,V}$	$V_{Rd,s}^{M}$ [kN]	V _{Sd} [kN]
1.4	142	1.560	0.924	0.225

www.hilti.co.nz

 Company:
 Page:
 8

 Address:
 Specifier:
 9

 Phone I Fax:
 |
 E-Mail:

 Design:
 Base Fixing Design - 2
 Date:
 27/03/2024

 Fastening point:
 27/03/2024

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{Sd} \leq V_{Rd,c}$	$_{\rm pp} = \frac{V_{\rm Rk,cp}}{\gamma_{\rm M,c,p}}$	EOTA TR 029, Table 5.2.3.1
$V_{Rk,cp}$	$= k \cdot \min \left(N_{Rk,p}, N_{Rk,c} \right)$	EOTA TR 029, Eq. (5.7), (5.7a)
$N_{Rk,c}$	$= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N}$	EOTA TR 029, Eq. (5.3)
$egin{aligned} N_{Rk,c}^0 \ A_{c,N}^0 \end{aligned}$	$= k_1 \cdot \sqrt{f_{ck,cube}} \cdot h_{ef}^{1,5}$	EOTA TR 029, Eq. (5.3a)
$A_{c,N}^0$	$= s_{cr,N} \cdot s_{cr,N}$	EOTA TR 029, Eq. (5.3b)
$\psi_{\text{ s,N}}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EOTA TR 029, Eq. (5.3c)
$\psi_{ re,N}$	$= 0.5 + \frac{h_{ef}}{200} \le 1.00$	EOTA TR 029, Eq. (5.3d)
$\Psi_{\text{ ec1,N}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c1,V}}{s_{cr,N}}} \le 1.00$	EOTA TR 029, Eq. (5.3e)
$\Psi_{\text{ ec2,N}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c2,V}}{s_{cr,N}}} \le 1.00$	EOTA TR 029, Eq. (5.3e)

$A_{c,N}$ [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	k-factor	k ₁
49,200	57,600	120.0	240.0	2.000	7.200
e _{c1,V} [mm]	$\Psi_{\text{ ec1,N}}$	e _{c2,V} [mm]	$\Psi_{\text{ ec2,N}}$	$\psi_{\text{s,N}}$	$\psi_{\text{re,N}}$
0.0	1.000	0.0	1.000	0.825	1.000
N _{Rk,c} [kN]	$\gamma_{M,c,p}$	V _{Rd,cp} [kN]	V _{Sd} [kN]		
25.760	1.500	24.203	0.450		

Group anchor ID

1, 2

www.hilti.co.nz

 Company:
 Page:
 9

 Address:
 Specifier:
 9

 Phone I Fax:
 |
 E-Mail:

 Design:
 Base Fixing Design - 2
 Date:
 27/03/2024

 Fastening point:
 27/03/2024

4.3 Concrete edge failure in direction y-

$V_{Sd} \leq V_{R}$	$_{\rm d,c} = \frac{V_{\rm Rk,c}}{\gamma_{\rm M,c}}$	EOTA TR 029, Table 5.2.3.1
$V_{Rk,c}$	$= \bigvee_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{a,V} \cdot \psi_{ec,V} \cdot \psi_{re,V}$	EOTA TR 029, Eq. (5.8)
$V_{Rk,c}$	$= K_1 \cdot d_{\text{nom}} \cdot N_{\text{ef}} \cdot \sqrt{T_{\text{ck,cube}}} \cdot C_1$	EOTA TR 029, Eq. (5.8a)
α	$= 0.1 \cdot \left(\frac{h_{ef}}{c_1}\right)^{0.5}$	EOTA TR 029, Eq. (5.8b)
β	$=0.1\cdot\left(\frac{d_{nom}}{c_1}\right)^{0.2}$	EOTA TR 029, Eq. (5.8c)
	$= 4.5 \cdot c_1^2$	EOTA TR 029, Eq. (5.8d)
$\psi_{\text{ s,V}}$	$= 0.7 + 0.3 \cdot \frac{c_2}{1.5 \cdot c_1} \le 1.00$	EOTA TR 029, Eq. (5.8e)
$\psi_{\text{ h,V}}$	$= \left(\frac{1.5 \cdot c_1}{h}\right)^{0.5} \ge 1.00$	EOTA TR 029, Eq. (5.8f)
$\psi_{\alpha, V}$	$= \sqrt{\frac{1}{\left(\cos \alpha_{\rm V}\right)^2 + \left(\frac{\sin \alpha_{\rm V}}{2.5}\right)^2}} \ge 1.00$	EOTA TR 029, Eq. (5.8g)
$\psi_{\text{ ec,V}}$	$= \frac{1}{1 + \frac{2 \cdot e_{c,V}}{3 \cdot c_1}} \le 1.00$	EOTA TR 029, Eq. (5.8h)
h	[mm] d [mm] k	α β

h	n _{ef} [mm]	d _{nom} [mm]	k ₁	α	β		
	80.0	12.00	1.700	0.103	0.069		
	c ₁ [mm]	$A_{c,V}$ [mm ²]	$A_{c,V}^0$ [mm ²]				
	75.0	24,750	25,312				
	$\psi_{s,V}$	$\psi_{\text{h,V}}$	α_{V} [°]	$\psi_{\alpha,V}$	e _{c,V} [mm]	$\psi_{\text{ ec,V}}$	$\psi_{\text{re,V}}$
	1.000	1.011	0.00	1.000	0.0	1.000	1.000
V	/ ⁰ _{Rk,c} [kN]	$\gamma_{M,c}$	V _{Rd,c} [kN]	V _{Sd} [kN]	_		
	9.669	1.500	6.374	0.450			

www.hilti.co.nz

Company: Page: 10
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Base Fixing Design - 2 Date: 27/03/2024
Fastening point:

5 Combined tension and shear loads (EOTA TR 029, Section 5.2.4)

β_{N}	β_{V}	α	Utilization $\beta_{N,V}$ [%]	Status	
0.949	0.243	1.000	100	OK	

 $(\beta_N + \beta_V) / 1.2 \le 1.0$

6 Displacements (highest loaded anchor)

Short term loading:

= 5.361 [kN] 0.1244 [mm] N_{Sk} δ_{N} 0.167 [kN] δ_V 0.0083 [mm] 0.1247 [mm] Long term loading: 5.361 [kN] N_{Sk} 0.2844 [mm] V_{Sk} 0.167 [kN] 0.0133 [mm] 0.2847 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the anchor plate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

7 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Checking the transfer of loads into the base material is required in accordance with EOTA TR 029, Section 7!
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to be done separately.
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of EOTA TR029! For larger diameters of the clearance hole see Chapter 1.1. of EOTA TR029!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- Bore hole cleaning must be performed according to instructions for use (blow twice with oil-free compressed air (min. 6 bar), brush twice, blow twice with oil-free compressed air (min. 6 bar)).
- · Characteristic bond resistances depend on short- and long-term temperatures.
- · Edge reinforcement is not required to avoid splitting failure
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

www.hilti.co.nz

 Company:
 Page:
 11

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Base Fixing Design - 2
 Date:
 27/03/2024

 Fastening point:
 27/03/2024

8 Installation data

Anchor plate, steel: S 235; E = 210,000.00 N/mm²; f_{vk} = 235.00 N/mm²

Profile: no profile

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$

Plate thickness (input): 6.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

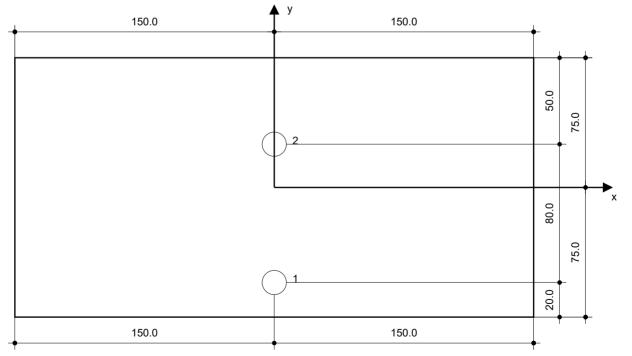
Anchor type and diameter: HIT-HY 200-R V3 + HAS-U A4

M12

Item number: 2223844 HAS-U A4 M12x160 (element) /

Maximum installation torque: 40 Nm Hole diameter in the base material: 14.0 mm Hole depth in the base material: 80.0 mm

2262131 HIT-HY 200-R V3 (adhesive)


Minimum thickness of the base material: 110.0 mm

Hilti HAS-U threaded rod with HIT-HY 200-R V3 injection mortar with 80 mm embedment h_ef, M12, Stainless steel, Hammer drilled installation per ETA 19/0601

8.1 Recommended accessories

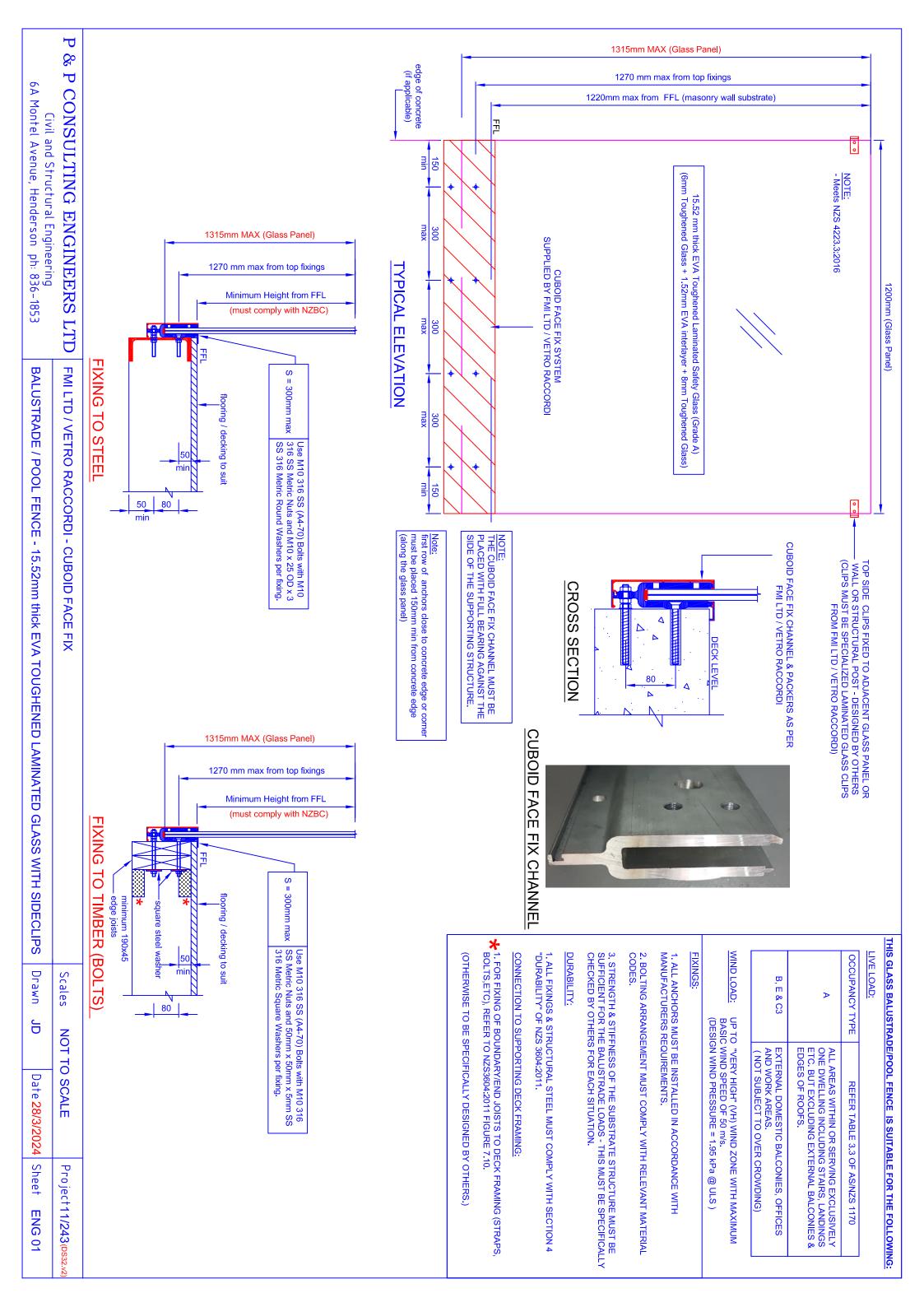
Drilling Cleaning Setting

- Suitable Rotary Hammer
- · Properly sized drill bit
- Compressed air with required accessories to blow from the bottom of the hole
- · Proper diameter wire brush
- · Dispenser including cassette and mixer
- For deep installations, a piston plug is necessary
- Torque wrench

Coordinates Anchor [mm]

Anchor	X	у	C _{-x}	C+x	c _{-y}	C _{+y}
1	0.0	- 55.0	150.0	150.0	75.0	130.0
2	0.0	25.0	150.0	150.0	155.0	50.0

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan



www.hilti.co.n															
	7	n	ш	റ	C	ш	ITI	П	n	7	w	N	л	v	1

Company:		Page:	12
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Base Fixing Design - 2	Date:	27/03/2024
Fastening point:			

9 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

S = 300mm max INTERNAL BALUSTRADE (A,B,E,C3,VH) M12 Stainless Steel 316 Coach Screw (top fixing) / Lagscrew (bottom fixing) M10 Stainless Steel 316 Coach Screw (top fixing) / Lagscrew (bottom fixing) p = 81 mmp = 89 mm

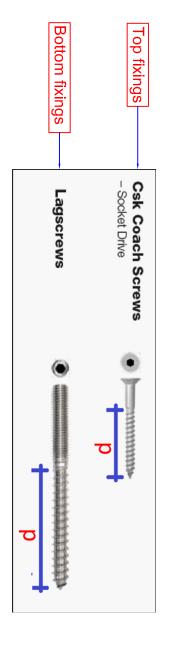
M10 Stainless Steel 316 Coach Screw (top fixing) /

S = 300mm max Lagscrew (bottom ואווען) M12 Stainless Steel 316 Coach Screw (top fixing) / _agscrew (bottom fixing) p = 116 mmp = 128 mm

Note:

p = minimum screw thread penetration into structural timber framing

1315mm MAX (Glass Panel)


1270 mm max from top fixings

Minimum Height from FFL (must comply with NZBC)

* flooring / decking to suit 80 Note:
Minimum Edge Distance (Y)
Y = 50mm (using M10)
Y = 60mm (using M12)

FIXING TO TIMBER (COACH SCREWS / LAGSCREWS)

Supporting Timber Substrate to suit - minimum 190x45 edge joists (timber shown is indicative only, ensure minimum screw penetration p into timber is achieved)

p = minimum screw thread penetration into structural timber framing

DETAILS OF COACH SCREWS / LAGSCREWS

THIS GLASS S BALUSTRADE/POOL FENCE IS SUITABLE FOR THE FOLLOWING:

LIVE LOAD:

	OCCUPANCY TYPE	REFER TABLE 3.3 OF AS/NZS 1170
	Α	ALL AREAS WITHIN OR SERVING EXCLUSIVELY ONE DWELLING INCLUDING STAIRS, LANDINGS ETC. BUT EXCLUDING EXTERNAL BALCONIES & EDGES OF ROOFS.
	B, E & C3	EXTERNAL DOMESTIC BALCONIES, OFFICES AND WORK AREAS.
		(NOT SUBJECT TO OVER CROWDING)

WIND LOAD: UP TO "VERY HIGH" (VH) WIND ZONE WITH MAXIMUM BASIC WIND SPEED OF 50 $\ensuremath{\mathrm{m/s}}.$

(DESIGN WIND PRESSURE = 1.95 kPa @ ULS)

FIXINGS:

- 1. ALL ANCHORS MUST BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS REQUIREMENTS.
- 2. BOLTING ARRANGEMENT MUST COMPLY WITH RELEVANT MATERIAL CODES.
- 3. STRENGTH & STIFFNESS OF THE SUBSTRATE STRUCTURE MUST BE SUFFICIENT FOR THE BALUSTRADE LOADS THIS MUST BE SPECIFICALLY CHECKED BY OTHERS FOR EACH SITUATION.

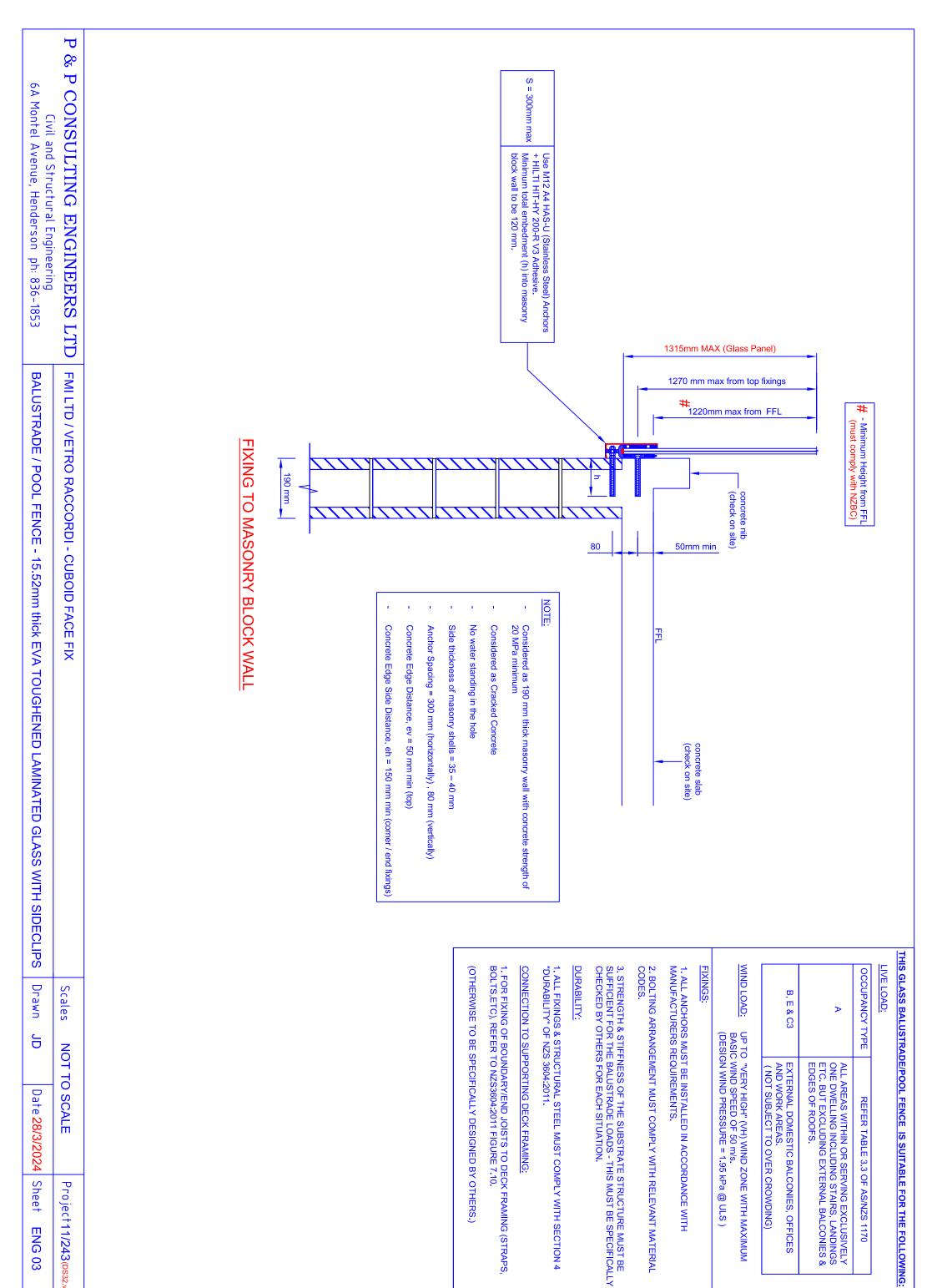
DURABILITY:

1. ALL FIXINGS & STRUCTURAL STEEL MUST COMPLY WITH SECTION 4 "DURABILITY" OF NZS 3604:2011.

CONNECTION TO SUPPORTING DECK FRAMING:

★ 1. FOR FIXING OF BOUNDARY/END JOISTS TO DECK FRAMING (STRAPS, BOLTS,ETC), REFER TO NZS3604:2011 FIGURE 7.10.

(OTHERWISE TO BE SPECIFICALLY DESIGNED BY OTHERS.)


BALUSTI	Civil and Structural Engineering 6A Montel Avenue, Henderson ph: 836–1853	
FMI LTD	P & P CONSULTING ENGINEERS LTD	

/ VETRO RACCORDI - CUBOID FACE FIX

Scales Dra <u>×</u> Р **NOT TO SCALE** Date 28/3/2024

Sheet Project11/243(ps32.vz) **ENG 02**

BALUSTRADE / POOL FENCE - 15.52mm thick EVA TOUGHENED LAMINATED GLASS WITH SIDECLIPS

Sheet

ENG 03

Project11/243(ps32.vz)