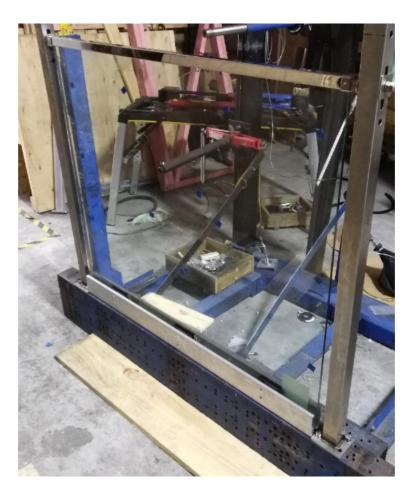
P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ


Dr. H.D.W. FENDALL (Consultant) B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ 6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds38 18 February 2025

FMI Building Innovation Ltd / Vetro Raccordi

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE

<u>USING CLEARVISTA SURFACE MOUNT SYSTEM &</u> 12mm thick TOUGHENED GLASS (with Top Capping Rail)

(Glass Finished Height from FFL = 1100mm max)

	INDEX	PAGE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B, E and C3.	
	The glass balustrade had also been tested for max "Very High" wind load.	
3.	Load Tests	3
4.	Tests Arrangement & Results	4
4.1	<u>Balustrade</u>	4
	Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by ClearVista Surface Mour and with top capping rail was sufficient for the following:	
	Occupancy types A, B, E, C3Up to max "Very High" Wind	
5.	Base Fixings	6
	Refer to Summary Drawing ENG 01 for reference.	
5.1	Base Fixings for Internal Balustrade ➤ For Occupancy types A, B, E, C3 ➤ For Up to max "Very High" Wind	6
5.2	Base Fixings for External Balustrade ➤ For Occupancy types B, E, C3 ➤ For Up to max "Very High" Wind	9

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by FMI Building Innovation Ltd / Vetro Raccordi.

Building Code Clause(s).B1,F2,F4

PRODUCER STATEMENT - PS1 - DESIGN

(Guidance on use of Producer Statements (formerly page 2) is available at www.engineeringnz.org)

ISSUED BY:	P & P CONSULTING ENGIN	IEERS LID	
		(Design Firm)	
TO:	FMI Building Innovation Ltd	/ Vetro Raccordi	
		(Owner/Developer)	
TO BE SUPPLIED TO:	VARIOUS		
01.40	·	uilding Consent Authority)	NUCLIENED OF ACC & TOD CARDING DAIL
	(De	scription of Building Work)	DUGHENED GLASS & TOP CAPPING RAIL
AT: VARIOUS SITES (Oc	cupancy Type A,B,E, C3 and	d Up to max "Very High" W (Address)	ind)
Town/City:	LO 7 (Address)	г	DPSO
We have been engaged by	the owner/developer referre	d to above to provide:	
GLASS TESTING REVIE	W AND DESIGN FOR BASE	FIXING	
	`	Extent of Engagement)	
services in respect of the r	equirements of Clause(s)	.F2, F4of t	ne Building Code for:
☐ All or ☐ Part only (as	specified in the attachment to	this statement), of the pro	pposed building work.
The design carried out by	us has been prepared in acco	ordance with:	
Compliance Documents	s issued by the Ministry of Bu	siness, Innovation & Empl	oymentor (verification method/acceptable solution)
Alternative solution as p	per the attached schedule		
The proposed building wor	k covered by this producer st	atement is described on th	e drawings titled:
	ORDI - SURFACE MOUNT tion, and other documents set		ed .REF:11/243/DS38, DRAWING ENG01 ed to this statement.
On behalf of the Design I (i) Site verification of the fo (ii) All proprietary products	Firm, and subject to: ollowing design assumptions . meeting their performance sp	REFER NOTES AT THE E	ND OF DESIGN SUMMARY
documents provided or list	ed in the attached schedule, vertaken the design have the r	will comply with the relevan	e with the drawings, specifications, and other nt provisions of the Building Code and that b) do so. I also recommend the following level o
CM1CM2CM3	3 CM4 CM5 (Engineeri	ng Categories) or as per a	agreement with owner/developer (Architectural)
(Name of I	Design Professional)		51801 # Reg Arch#
I am a member of: Engi The Design Firm issuing the The Design Firm is a mem	is statement hol <u>ds</u> a current po	ZIA and hold the following olicy of Professional Indem	qualifications: BE(Civil), CPEng nity Insurance no less than \$200,000*.
SIGNED BY Parmil Prakas	sh (Name of Design Professio	(Sig	nature)
	, ,	,	19 Eab 2025
ON BEHALF OF	(Design Firm)	OUATELINO ETD	Date 18 Feb 2025

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

 NZS 4223.3:2016
 Glazing In Buildings

 AS/NZS 1170:2002
 Loadings Code

 NZS 3404:1997
 Structural Steel

 NZS 3101:1995
 Concrete

 NZS 3603:1993
 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

<u>Occupancy</u>	Specific Uses	Top E	Top Edge	
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa
B, E & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN

Wind Loads (VERY HIGH)

Winds in	n terms of th	ne Wind Speed cate	gories in	
NZS 3604:2011 (up to 50 m/s).				
=	50.0	m/s		
=	37.3	m/s		
=	1.50	kPa (ULS)		
=	0.83	kPa (SLS)		
Cp =	1.30			
) Cp =	0.30			
p =	1.95	kPa (ULS)		
=	1.08	kPa (SLS)		
	<mark>ZS 3604</mark> = = =	ZS 3604:2011 (up to = 50.0 = 37.3 = 1.50 = 0.83 Cp = 1.30 Cp = 0.30 cp = 1.95	= 50.0 m/s = 37.3 m/s = 1.50 kPa (ULS) = 0.83 kPa (SLS) Cp = 1.30 Cp = 0.30 cp = 1.95 kPa (ULS)	

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

3. LOAD TESTS

<u>Location of Tests</u>: 49 Woodside Avenue, Auckland

<u>Date of Tests</u>: Feb 2019

<u>Test Description</u>: Load testing of Glass Balustrade

Panel Tested = 1200mm wide x 1080mm high glass panel,

1100mm finished height from FFL

System Description: The glass balustrade which was supplied by FMI Building Innovation Ltd /

Vetro Raccordi Ltd. comprised of 12mm thick Toughened (Grade A) Safety

Glass supported by ClearVista Surface Mount System and with top

capping rail fixed to side posts.

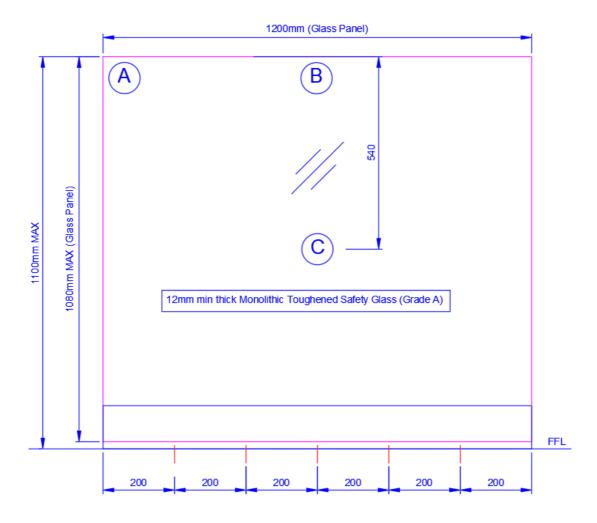
Setup / Procedure:

The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with ClearVista Surface Mount System. This system was bolted to the steel frame assembly with M10 fixings as shown below. Top capping rail was also installed on the glass panel which was fixed to the side posts acting as the supporting neighboring glass panels.

The hydraulic body frame/ram and load cell or weighing indicator were used to attain the required test loads.

Weighing-Indicator

Hydraulic Body Frame


-12mm thick Toughened Glass Panel with Top Capping Rail

ClearVista Surface Mount System

Steel Frame Assembly

4. TESTS ARRANGEMENT & RESULTS

4.1 BALUSTRADE

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

TEST RESULTS (Fracture Check - ULS)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122	16	No Fracture
В	183	16	No Fracture
С	344	16	No Fracture

TEST RESULTS (Deflection Check - SLS)

Tooto	Target Load	Deflec	Domostko		
Tests	@ SLS (Kg)	Sample 1	Sample 2	Sample 3	Remarks
Α	61	13	14	13	Passed
В	91.7	12	13	12	Passed
С	145	12	13	12	Passed

Allowable Deflection = H/30 = 36.7 mm

Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by ClearVista Surface Mount System and with top capping rail was sufficient for the following:

- ➤ Occupancy types A, B, E, C3
- ➤ Up to max "Very High" Wind

5.0 Base Fixings 6

Refer to Summary Drawing ENG 01 for reference.

5.1 Base Fixings for Internal Balustrade

- For Occupancy types A, B, E, C3
- For Up to max "Very High" Wind

Maximum Spacing of Base Fixings =

200 mm

Number of base fixings = 4

Max Height of Balustrade from Deck Level = 1.100 m

	LIPSION LOAD					Shear at base, kN	Tension per fixing, kN
	1.5Q1:	1.5 x 0.75 kN/m x spacing =	0.225	kN	0.25	0.23	9.92
A,B,E,C3 Loading	1.5Q2:	1.5 x 0.6 kN / (no of base fixings) =	0.225	kN	0.25	0.23	9.92
	1.5Q3:	1.5 x 1.0 kPa =	1.5	kPa	0.18	0.33	7.27
Wind (VH)-external	Wuls:	0.6 x 50 x 50 /1000 x 1.3 =	1.95	kPa	0.24	0.43	9.46

Tension per fixing, T = M / (lever arm)lever arm = 11 + 0.9 (15.5) = 24.95 mr

Max Tension per Fixing, T =	9.92	kN	
Max Shear per Fixing, V =	0.43	kN	

A. Fixing to Concrete

Refer to page 8 for HILTI design calculations.

Concrete Strength, f'c = 20MPa min
Considered as Cracked Concrete
Anchor Spacing = 200 mm
Concrete Edge Distance, e = 75mm min (100mm other side or corner)
Dry Concrete

Use HILTI HIT HY 200-R V3 Adhesive + M12 HAS-U (Grade 5.8) Anchors. Minimum embedment (h) into cracked concrete to be 120 mm.

(spacing = 200mm max centres)

B. Fixing to Steel

Using M10 Grade 4.6/S

ØN = 18.56 kN OK CDR= 0.58 OK

ØV = **9.62** kN **OK**

Use M10 Grade 4.6/S Steel Bolts with metric round washer per fixing.

(spacing = 200mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\varnothing Q = \varnothing k1 \times k3 \times Fp \times Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), \emptyset =0.8, k1=1.0 (brief), k3=1

Using 50x50x5 Square Washers

ØQ = 16.99 kN (dry) OK

Use M10 Grade 4.6/S Steel Bolts with 50x50x5 Square Steel Washers.

(spacing = 200mm max centres)

D. Fixing to Timber Using Coach Screws

As per NZS3603, Timber Group J5, Screws in Withdrawal.($\emptyset Q = \emptyset n k1 K p Qk$)

where: \emptyset =0.7, k1=1.0 (brief), K=0.7 (wet) or 1 (dry)

Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

Using M	Using M10 Coach Screws						
	ØQ =	74.9 N/mm (dry)	Min Penetration p =	133 mm (dry)			
		· • • • • • • • • • • • • • • • • • • •	•	· • • • • • • • • • • • • • • • • • • •			
Using M	Using M12 Coach Screws						
	ØQ =	82.6 N/mm (dry)	Min Penetration $p =$	121 mm (dry)			

(spacing = 200mm max centres)

www.hilti.co.nz

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200-R V3 + HAS-U 5.8 M12

Return period (service life in years): 50

Item number: 2223823 HAS-U 5.8 M12x160 (element) / 2262134

HIT-HY 200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 120.0 \text{ mm } (h_{ef,limit} = - \text{ mm})$

Material: 5.8

Evaluation Service Report: ETA 19/0601 Issued I Valid: 2/12/2021 | -

Proof: Design Method New Zealand NZS 3101, chapter 17.5.5 – ETAG Design; EOTA TR 029

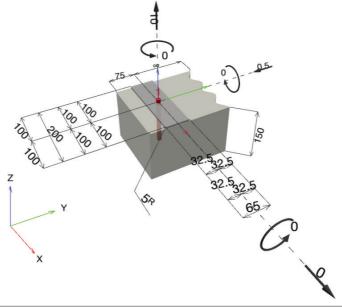
Stand-off installation: $e_b = 0.0 \text{ mm}$ (no stand-off); t = 5.0 mm

Anchor plate^R: $I_x \times I_y \times t = 200.0 \text{ mm} \times 65.0 \text{ mm} \times 5.0 \text{ mm}$; (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, C20/25, f_{c.cube} = 25.00 N/mm²; h = 150.0 mm, Temp. short/long: 40/24 °C

Installation: hammer drilled hole, Installation condition: Dry


Reinforcement: no reinforcement or reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

no longitudinal edge reinforcement

Reinforcement to control splitting according to EOTA TR 029, 5.2.2.6 present.

Application also possible with HVU2 + HAS-U 5.8 M12_hef1 under the selected boundary conditions. More information in section Alternative fastening data of this report.

Geometry [mm] & Loading [kN, kNm]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1

^R - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.co.nz

 Company:
 Page:
 2

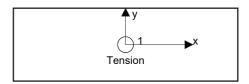
 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

1.1 Load combination


Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
 1	Combination 1	$N = 10.000; V_x = 0.000; V_y = -0.500;$	no	no	95
		$M_x = 0.000$; $M_v = 0.000$; $M_z = 0.000$;			

2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	10.000	0.500	0.000	-0.500

Anchor forces are calculated based on the assumption of a rigid anchor plate.

www.hilti.co.nz

Company: 3 Page: Specifier: E-Mail: Address:

Phone I Fax: Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

3 Tension load (EOTA TR 029, Section 5.2.2)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel Strength*	10.000	28.133	36	OK
Combined pullout-concrete cone failure**	10.000	11.527	87	OK
Concrete Breakout Failure**	10.000	10.574	95	OK
Splitting failure**	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (anchors in tension)

3.1 Steel Strength

$$N_{\text{Sd}} \leq N_{\text{Rd,s}} = \frac{N_{\text{Rk,s}}}{\gamma_{\text{M,s}}}$$
 EOTA TR 029, Table 5.2.2.1

N _{Rk,s} [kN]	$\gamma_{M,s}$	$N_{Rd,s}$ [kN]	N _{Sd} [kN]
42.200	1.500	28.133	10.000

6

Hilti PROFIS Engineering 3.0.79

www.hilti.co.nz

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

4 Shear load (EOTA TR 029, Section 5.2.3)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel Strength (without lever arm)*	0.500	20.256	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	0.500	21.147	3	OK
Concrete edge failure in direction y-**	0.500	6.035	9	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength (without lever arm)

$$V_{\text{Sd}} \leq V_{\text{Rd,s}} = \frac{V_{\text{Rk,s}}}{\gamma_{\text{M,s}}} \qquad \qquad \text{EOTA TR 029, Table 5.2.3.1}$$

V _{Rk,s} [kN]	$\gamma_{M,s}$	$V_{Rd,s}$ [kN]	V _{Sd} [kN]
25.320	1.250	20.256	0.500

www.hilti.co.nz

 Company:
 Page:
 9

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Aug 17, 2022
 Date:
 18/08/2022

 Fastening point:
 18/08/2022

5 Combined tension and shear loads (EOTA TR 029, Section 5.2.4)

Steel failure

β_{N}	β_{V}	α	Utilization $\beta_{N,V}$ [%]	Status
).946	0.083	1.000	86	OK

 $(\beta_N + \beta_V) / 1.2 \le 1.0$

6 Displacements (highest loaded anchor)

Short term loading:

 $\boldsymbol{\delta}_{N}$ N_{Sk} 7.407 [kN] 0.1146 [mm] V_{Sk} 0.370 [kN] δ_{V} 0.0185 [mm] 0.1161 [mm] Long term loading: $N_{\rm Sk}$ 7.407 [kN] 0.2620 [mm] V_{Sk} 0.370 [kN] 0.0296 [mm] 0.2637 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the anchor plate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

7 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Checking the transfer of loads into the base material is required in accordance with EOTA TR 029, Section 7!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of EOTA TR029! For larger diameters of the clearance hole see Chapter 1.1. of EOTA TR029!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- Bore hole cleaning must be performed according to instructions for use (blow twice with oil-free compressed air (min. 6 bar), brush twice, blow twice with oil-free compressed air (min. 6 bar)).
- · Characteristic bond resistances depend on short- and long-term temperatures.
- · Edge reinforcement is not required to avoid splitting failure
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

www.hilti.co.nz

 Company:
 Page:
 10

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Aug 17, 2022
 Date:
 18/08/2022

 Fastening point:
 18/08/2022

8 Installation data

Anchor plate, steel: S 235; E = 210,000.00 N/mm²; f_{vk} = 235.00 N/mm²

M12

Profile: no profile

Item number: 2223823 HAS-U 5.8 M12x160 (element) /

Anchor type and diameter: HIT-HY 200-R V3 + HAS-U 5.8

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$

2262134 HIT-HY 200-R V3 (adhesive) Maximum installation torque: 40 Nm

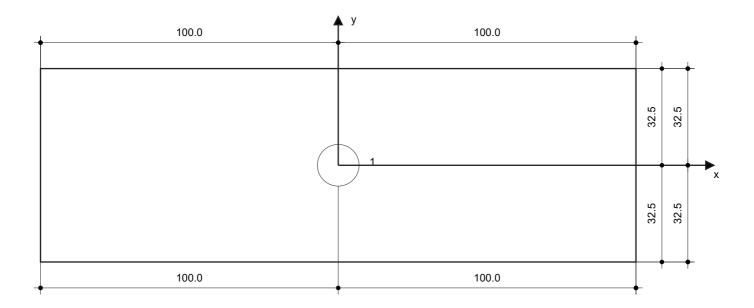
Plate thickness (input): 5.0 mm

Hole diameter in the base material: 14.0 mm Hole depth in the base material: 120.0 mm

Recommended plate thickness: not calculated

Minimum thickness of the base material: 150.0 mm

Drilling method: Hammer drilled


Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

Hilti HAS-U threaded rod with HIT-HY 200-R V3 injection mortar with 120 mm embedment h_ef, M12, Steel galvanized, Hammer drilled installation per ETA 19/0601

8.1 Recommended accessories

Drilling
Cleaning
Setting
Suitable Rotary Hammer
Properly sized drill bit
Compressed air with required
accessories to blow from the bottom of the hole
Proper diameter wire brush
Setting
Drilling
Drilling
Setting
Dispenser including cassette and mixer
Torque wrench

Coordinates Anchor [mm]

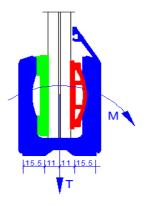
Anchor	x	у	C _{-x}	C+x	C _{-y}	C _{+y}
1	0.0	0.0	100.0	100.0	75.0	-

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

BASE FIXINGS FOR EXTERNAL BALUSTRADE

- For Occupancy types B, E, C3

- For Up to max "Very High" Wind


Maximum Spacing of Base Fixings

200 mm

Number of base fixings = 4

Max Height of Balustrade from Deck Level = 1.100 m

LIBORNI DAN					Moment at base, kNm		Tension per fixing, kN
B,E,C3 Loading	1.5Q1:	1.5 x 0.75 kN/m x spacing =	0.225	kN	0.25	0.23	9.92
	1.5Q2:	$1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$	0.225	kN	0.25	0.23	9.92
	1.5Q3:	1.5 x 1.0 kPa =	1.5	kPa	0.18	0.33	7.27
Wind (VH)-external	Wuls:	$0.6 \times 50 \times 50 / 1000 \times 1.3 =$	1.95	kPa	0.24	0.43	9.46

Tension per fixing, T = M / (lever arm)lever arm = 11 + 0.9 (15.5) = 24.95 mm

Max Tension per Fixing, T = 9.92 kN
Max Shear per Fixing, V = 0.43 kN

A. Fixing to Concrete

Refer to page 11 for HILTI design calculations.

Concrete Strength, f'c = 20MPa min
Considered as Cracked Concrete
Anchor Spacing = 200 mm
Concrete Edge Distance, e = 75mm min (100mm other side or corner)
No water standing in the hole

Use HILTI HIT HY 200-R V3 Adhesive + M12 A4 HAS-U (Stainless Steel) Anchors.

Minimum embedment (h) into cracked concrete to be 120 mm.

(spacing = 200mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = 27.20 kN OK ØV = 17.86 kN OK CDR= 0.28 **OK**

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing

(spacing = 200mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\varnothing Q = \varnothing k1 \times k3 \times Fp \times Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), $\emptyset = 0.8$, k1 = 1.0 (brief), k3 = 1

Using 65x65x5 Square Washers

ØQ = **17.43** kN (wet) OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 65x65x5 square steel washers.

(spacing = 200mm max centres)

D. Fixing to Timber Using Coach Screws

As per NZS3603, Timber Group J5, Screws in Withdrawal. (ØQ = Ø n k1 K p Qk)

where: \emptyset =0.7, k1=1.0 (brief), K=0.7 (wet) or 1 (dry)

Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

Using M10 Coach Screws							
	ØQ =	52.43 N/mm (wet)	Min Penetration $p =$	190 mm (wet)			
		, ,	·	, ,			
Using M12 Coach Screws							
	ØQ =	57.82 N/mm (wet)	Min Penetration p =	172 mm (wet)			

(spacing = 200mm max centres)

www.hilti.co.nz

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200-R V3 + HAS-U A4 M12

Return period (service life in years): 50

Item number: 2223844 HAS-U A4 M12x160 (element) / 2262134

HIT-HY 200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 120.0 \text{ mm } (h_{ef,limit} = - \text{ mm})$

Material: A4

Evaluation Service Report: ETA 19/0601 Issued I Valid: 2/12/2021 | -

Proof: Design Method New Zealand NZS 3101, chapter 17.5.5 – ETAG Design; EOTA TR 029

Stand-off installation: $e_b = 0.0 \text{ mm}$ (no stand-off); t = 5.0 mm

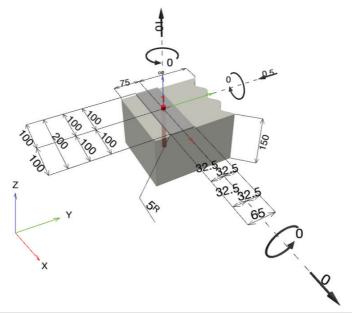
Anchor plate^R: $I_x \times I_y \times t = 200.0 \text{ mm} \times 65.0 \text{ mm} \times 5.0 \text{ mm}$; (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, C20/25, f_{c.cube} = 25.00 N/mm²; h = 150.0 mm, Temp. short/long: 40/24 °C

Installation: hammer drilled hole, Installation condition: Water saturated

Reinforcement: no reinforcement or reinforcement spacing >= 150 mm (any \emptyset) or >= 100 mm (\emptyset <= 10 mm)


no longitudinal edge reinforcement

Reinforcement to control splitting according to EOTA TR 029, 5.2.2.6 present.

Application also possible with HVU2 + HAS-U A4 M12_hef1 under the selected boundary conditions. More information in section Alternative fastening data of this report.

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [mm] & Loading [kN, kNm]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1

www.hilti.co.nz

 Company:
 Page:
 2

 Address:
 Specifier:

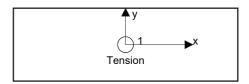
 Phone I Fax:
 E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

1.1 Load combination

	Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
_	1	Combination 1	$N = 10.000; V_x = 0.000; V_y = -0.500;$	no	no	95
			$M_x = 0.000$; $M_v = 0.000$; $M_z = 0.000$;			


2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	10.000	0.500	0.000	-0.500

 $\label{eq:max_concrete} \begin{array}{ll} \text{max. concrete compressive strain:} & - [\%] \\ \text{max. concrete compressive stress:} & - [N/\text{mm}^2] \\ \text{resulting tension force in (x/y)=(0.0/0.0):} & 10.000 [kN] \\ \text{resulting compression force in (x/y)=(0.0/0.0):} & 0.000 [kN] \\ \end{array}$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

www.hilti.co.nz

Company: 3 Page: Specifier: E-Mail: Address:

Phone I Fax: Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

3 Tension load (EOTA TR 029, Section 5.2.2)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel Strength*	10.000	31.551	32	OK
Combined pullout-concrete cone failure**	10.000	11.527	87	OK
Concrete Breakout Failure**	10.000	10.574	95	OK
Splitting failure**	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (anchors in tension)

3.1 Steel Strength

$$N_{\text{Sd}} \leq N_{\text{Rd,s}} = \frac{N_{\text{Rk,s}}}{\gamma_{\text{M,s}}}$$
 EOTA TR 029, Table 5.2.2.1

N _{Rk,s} [kN]	$\gamma_{M,s}$	$N_{Rd,s}$ [kN]	N _{Sd} [kN]
59.000	1.870	31.551	10.000

6

Hilti PROFIS Engineering 3.0.79

www.hilti.co.nz

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

Fastening point:

4 Shear load (EOTA TR 029, Section 5.2.3)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel Strength (without lever arm)*	0.500	18.910	3	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	0.500	21.147	3	OK
Concrete edge failure in direction y-**	0.500	6.035	9	OK

^{*} highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength (without lever arm)

$$V_{Sd} \leq V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{M,s}}$$
 EOTA TR 029, Table 5.2.3.1

V _{Rk,s} [kN]	$\gamma_{M,s}$	$V_{Rd,s}$ [kN]	V _{Sd} [kN]
29.500	1.560	18.910	0.500

www.hilti.co.nz

 Company:
 Page:
 9

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Aug 17, 2022
 Date:
 18/08/2022

 Fastening point:
 18/08/2022

5 Combined tension and shear loads (EOTA TR 029, Section 5.2.4)

Steel failure

β_{N}	β_{V}	α	Utilization $\beta_{N,V}$ [%]	Status	
0.946	0.083	1.000	86	OK	

 $(\beta_N + \beta_V) / 1.2 \le 1.0$

6 Displacements (highest loaded anchor)

Short term loading:

 $\boldsymbol{\delta}_{N}$ N_{Sk} 7.407 [kN] 0.1146 [mm] V_{Sk} 0.370 [kN] δ_{V} 0.0185 [mm] 0.1161 [mm] Long term loading: $N_{\rm Sk}$ 7.407 [kN] 0.2620 [mm] V_{Sk} 0.370 [kN] 0.0296 [mm] 0.2637 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the anchor plate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

7 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Checking the transfer of loads into the base material is required in accordance with EOTA TR 029, Section 7!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of EOTA TR029! For larger diameters of the clearance hole see Chapter 1.1. of EOTA TR029!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- Bore hole cleaning must be performed according to instructions for use (blow twice with oil-free compressed air (min. 6 bar), brush twice, blow twice with oil-free compressed air (min. 6 bar)).
- · Characteristic bond resistances depend on short- and long-term temperatures.
- · Edge reinforcement is not required to avoid splitting failure
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

10

Hilti PROFIS Engineering 3.0.79

www.hilti.co.nz

Fastening point:

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Concrete - Aug 17, 2022 Date: 18/08/2022

8 Installation data

Anchor type and diameter: HIT-HY 200-R V3 + HAS-U A4 Anchor plate, steel: S 235; E = 210,000.00 N/mm²; f_{vk} = 235.00 N/mm²

Item number: 2223844 HAS-U A4 M12x160 (element) / Profile: no profile

2262134 HIT-HY 200-R V3 (adhesive)

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$ Maximum installation torque: 40 Nm

> Hole diameter in the base material: 14.0 mm Hole depth in the base material: 120.0 mm

Minimum thickness of the base material: 150.0 mm

Plate thickness (input): 5.0 mm

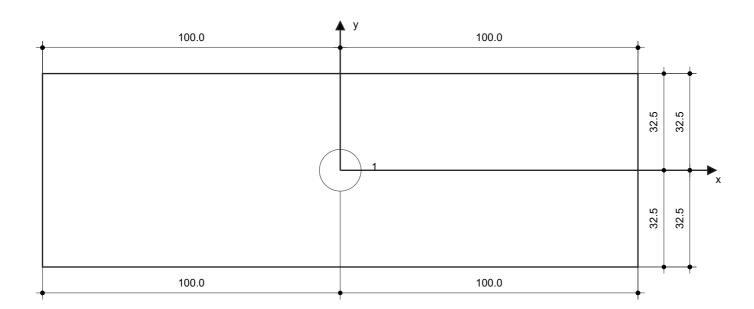
Recommended plate thickness: not calculated

Drilling method: Hammer drilled

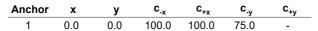
Cleaning: Compressed air cleaning of the drilled hole according to instructions

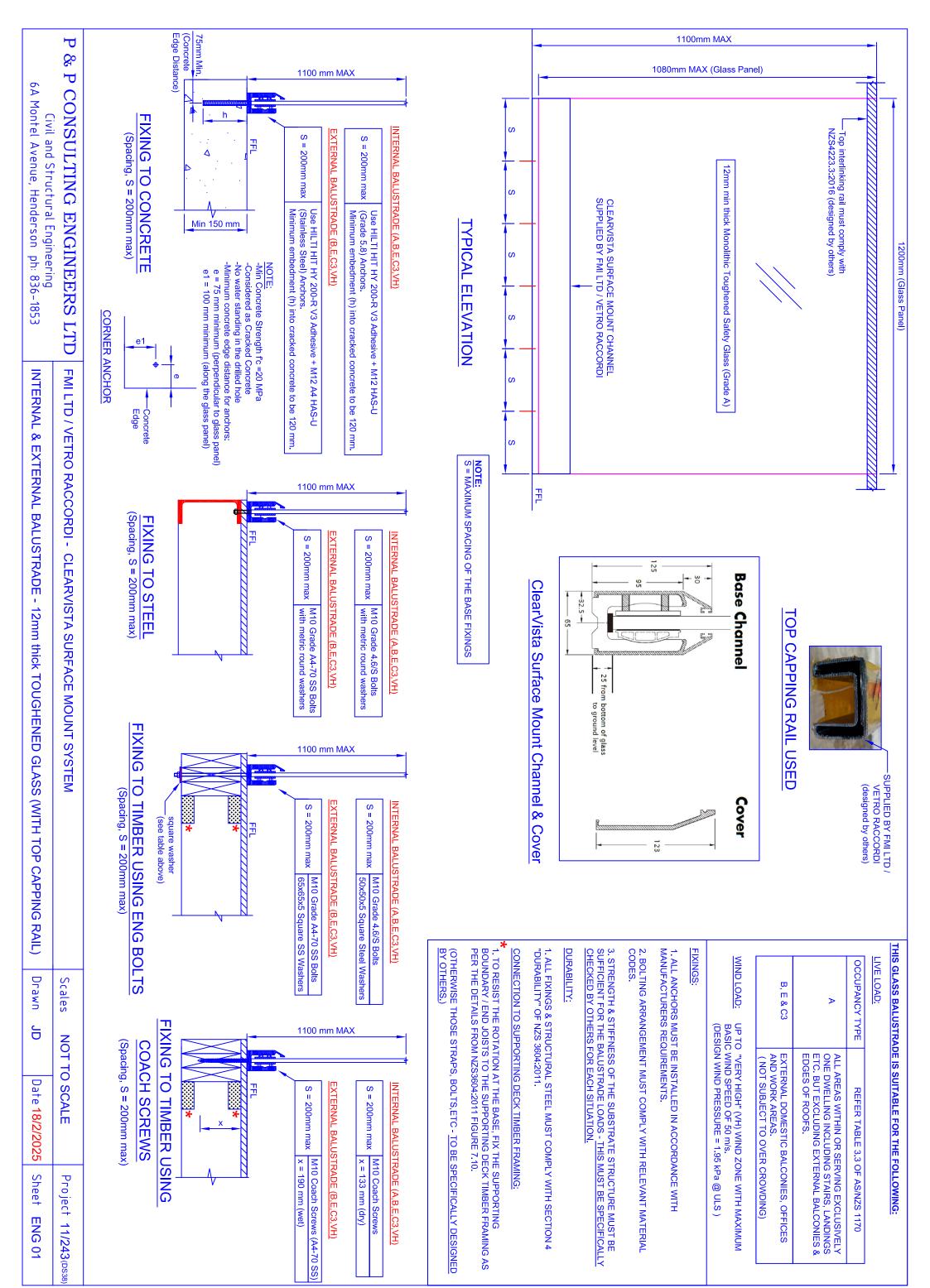
for use is required

Hilti HAS-U threaded rod with HIT-HY 200-R V3 injection mortar with 120 mm embedment h_ef, M12, Stainless steel, Hammer drilled installation per ETA 19/0601


8.1 Recommended accessories

Drilling Cleaning


· Suitable Rotary Hammer · Compressed air with required · Properly sized drill bit accessories to blow from the bottom of


the hole · Proper diameter wire brush · Dispenser including cassette and mixer

· Torque wrench

Coordinates Anchor [mm]

