P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ

Dr. H.D.W. FENDALL (Consultant) B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ 6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds39 27 September 2024

Vetro Raccordi / FMI Ltd

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE / POOL FENCE

<u>USING CUBOID FACE FIX SYSTEM & 12mm thick</u> <u>TOUGHENED GLASS (with Top Capping Rail)</u>

	INDEX	PAGE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B and C3.	
	The glass balustrade had also been tested for max "EXTRA HIGH" wind lo	oad.
3.	<u>Load Tests</u>	3
4.	Tests Arrangement & Results	4
4.1	<u>Balustrade</u>	4
	Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by Cuboid Face System and with top capping rail was sufficient for the following:	e Fix
	Occupancy types A, B, C3Up to max "EXTRA HIGH" Wind	
5.	Base Fixings	6
	Refer to Summary Drawing ENG 01 – ENG 02 for reference.	
5.1	Base Fixings for Internal Balustrade ➤ For Occupancy types A, B, C3 ➤ For Up to max "EXTRA HIGH" Wind	6
5.2	Base Fixings for External Balustrade ➤ For Occupancy types B, C3 ➤ For Up to max "EXTRA HIGH" Wind	8
5.3	Base Fixings for Pool Fence ➤ For Up to max "EXTRA HIGH" Wind	10
6.	Wind Load Assessment for Pool Fence	12
	Based from the assessment, the pool fence with size of 1200mm wide x high glass (1200mm height from FFL) is satisfactory for up to maximum Ex Wind.	
7.	Alternative Base Fixing into Timber (at 300mm max centres) ➤ For Occupancy types B, C3 ➤ For Up to max "EXTRA HIGH" Wind	13

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by Vetro Raccordi / FMI Ltd.

Building Code Clause(s).B1,F2,F4,F9

PRODUCER STATEMENT - PS1 - DESIGN

(Guidance on use of Producer Statements (formerly page 2) is available at www.engineeringnz.org)

ISSUED BY:	P & P CONSULTING ENGINEERS	LTD		
	,	sign Firm)		
TO:				
	VARIOUS LOCAL AUTHORITY	r/Developer)		
TO BE SUPPLIED TO:.	(Building C	onsent Authority)		
IN RESPECT OF: Glass	Balustrade/Pool Fence with Cuboid	• •	?mm ToughenedSaf	ety Glass & top capping rail
AT. VARIOUS SITES (O	ccupancy Type A,B,C3 and Up to ma	- ,	Wind)	
A 1		ddress)		
Town/City:	LOT		DP	so
We have been engaged b	(Address) by the owner/developer referred to ab	ove to provide:		
GLASS TESTING REVIE	W AND DESIGN FOR BASE FIXING	.		
	(Extent o	f Engagement)		
convices in respect of the	requirements of Clause(s).B1, F2, F4	,	the Building Code f	0.51
	. ,		· ·	
	s specified in the attachment to this s		roposea building wo	ork.
•	us has been prepared in accordance			
Compliance Document	ts issued by the Ministry of Business,	Innovation & Emp	loyment(verification m	Or ethod/acceptable solution)
Alternative solution as	per the attached schedule			
The proposed building wo	ork covered by this producer statemen	nt is described on t	the drawings titled:	
VETRO RACCORDI / FM	II LTD -CUBOID FACE FIX	and number	orod Ref: 11/243/ds	s39; ENG01, 01A & 02
	ation, and other documents set out in			
On behalf of the Design	Firm, and subject to:			W. II. III. A. D. V.
(i) Site verification of the fe	Firm, and subject to: Ollowing design assumptionss meeting their performance specifications	ation requirements	;	SUMMARY
documents provided or lis	grounds that a) the building, if const ted in the attached schedule, will cordertaken the design have the necess oservation:	nply with the releva	ant provisions of the	Building Code and that b),
~	3 CM4 CM5 (Engineering Cate)	gories) or 🔳 as per	r agreement with own	er/developer (Architectural)
(Name of	Design Professional)			eg Arch#
I am a member of: Eng The Design Firm issuing the The Design Firm is a men	gineering New Zealand \(\bigcap NZIA and an orbit of the note of the not	d hold the following Professional Inden	g qualifications: nnity Insurance no le	Civil), CPEng ess than \$200,000*.
SIGNED BYParmil Praka	nsh	/0:	anature) (Parche
SIGNED BI	(Name of Design Professional)	(S)	gnatur <i>e)</i>	
ON BEHALF OF	P & P CONSULTING ENGINEE (Design Firm)	RS LTD		DateDate

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

 NZS 4223.3:2016
 Glazing In Buildings

 AS/NZS 1170:2002
 Loadings Code

 NZS 3404:1997
 Structural Steel

 NZS 3101:1995
 Concrete

 NZS 3603:1993
 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

<u>Occupancy</u>	Specific Uses	Top E	dge	<u>Infill</u>
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa
B & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN

Wind Loads (EXTRA HIGH)

IJ.					
			in terms of :2011 (up to	the Wind Speed cated	ories in
		1420 000+	.2011 (up to	7 00 111/0/.	
	$V_{sit,\beta}(Ultimate)$	=	55.0	m/s	
	$V_{sit,\beta}$ (Serviceability)	=	37.3	m/s	
	q	=	1.82	kPa (ULS)	
	and	=	0.83	kPa (SLS)	
	For external barriers use	e Cp =	1.30		
	For internal barriers use	cp =	0.30		
	Wind Load = q x	Cp =	2.36	kPa (ULS)	
		=	1.08	kPa (SLS)	

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

3. LOAD TESTS

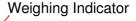
<u>Location of Tests</u>: 49 Woodside Avenue, Auckland

<u>Date of Tests</u>: January 2019

<u>Test Description</u>: Load testing of Glass Balustrade

Panel Tested = 1200mm wide x 1100mm high glass panel,

1000mm finished height from FFL


<u>System Description:</u> The glass balustrade which was supplied by Vetro Raccordi / FMI Ltd.

comprised of 12mm thick Toughened (Grade A) Safety Glass supported by Cuboid Face Fix System and with top capping rail fixed to side posts.

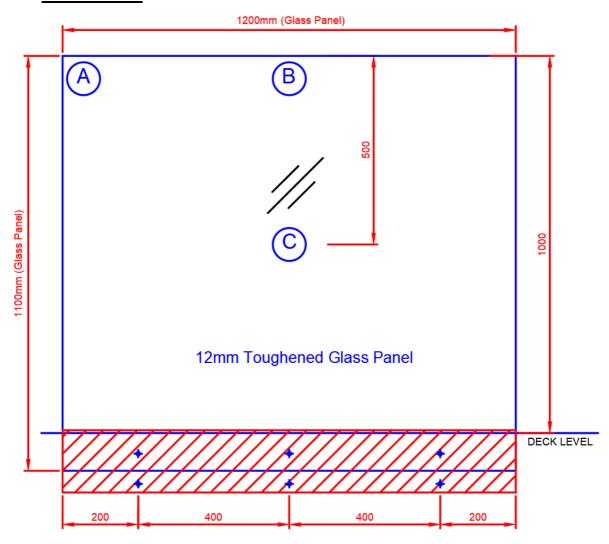
Setup / Procedure:

The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with Cuboid Face Fix System. This channel system was bolted to the steel frame assembly with M10 fixings as shown below. Top capping rail was also installed on the glass panel which was fixed to the side posts acting as the supporting neighboring glass panels.

The hydraulic body frame/ram and load cell or weighing indicator were used to attain the required test loads.

Hydraulic Body Frame

12mm thick Toughened Glass Panel with Top Capping Rail


> Cuboid Face Fix System

Steel Frame Assembly

4. TESTS ARRANGEMENT & RESULTS

4.1 **BALUSTRADE**

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

TEST RESULTS (Fracture Check)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122.0	16	No Fracture
В	183.0	16	No Fracture
С	423	16	No Fracture

TEST RESULTS (Deflection Check)

Tooto	Target Load	Deflec	Deflection @ Top (mm)					
Tests	@ SLS (Kg)	Sample 1	Sample 2	Sample 3	Remarks			
Α	61.2	11	12	12	Passed			
В	91.7	10	11	11	Passed			
С	145.9	7	7	7	Passed			

Allowable Deflection = H/30 = 33.3 mm

Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by Cuboid Face Fix System and with top capping rail was sufficient for the following:

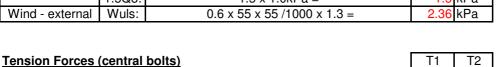
- ➤ Occupancy types A, B, C3
- ➤ Up to max "EXTRA HIGH" Wind

Refer to Summary Drawing ENG 01 - ENG 02 for reference.

BASE FIXINGS FOR INTERNAL BALUSTRADE

- For Occupancy types A, B, C3 - For Up to max "EXTRA HIGH" Wind

1.5Q1:


1.5Q2:

1.5Q3:

Wuls:

Maximum Tributary Spacing of Fixings = 400 mm Number of row of base fixings per panel = 3

		1.5Q1:	$1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$	0.3	kN
	C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.45	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
(E.H.)	Wind - external	Wuls:	0.6 x 55 x 55 /1000 x 1.3 =	2.36	kPa

N*/anchor = $Max N^*/anchor = 8.21 kN$

N*/anchor =

N*/anchor =

N*/anchor =

4.43

6.64

5.22

8.21

4.13 kΝ

6.19 kN

4.50 kN

7.07 kN

1000 mm Max

Deck Level

80

100 mm Max

mm

mm

Shear Force per Fixing (1.2G)

5.1

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.292 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.24 kN

> 1.2G: $V^*/anchor = 0.53 kN$

A. Fixing to Concrete

Refer to page 7 for design calculations.

Anchor Spacing= 80mm Concrete Strength, f'c = 20MPa min Considered as NON-Cracked Concrete Concrete Edge Dist= 50mm min

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

OK CDR= 0.55 < 1.2 OK ØN = **22.70** kN $\emptyset V =$ **2.80** kN OK

Use M10 Chemset Anchors (Grade 5.8 Steel) with Epcon C8 Series Epoxy. Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade 4.6/S

ØN = **18.56** kN OK CDR= 0.50 **OK** ØV = 9.62 kN OK

Use M10 Grade 4.6/S Steel Bolts with metric round washer per fixing.

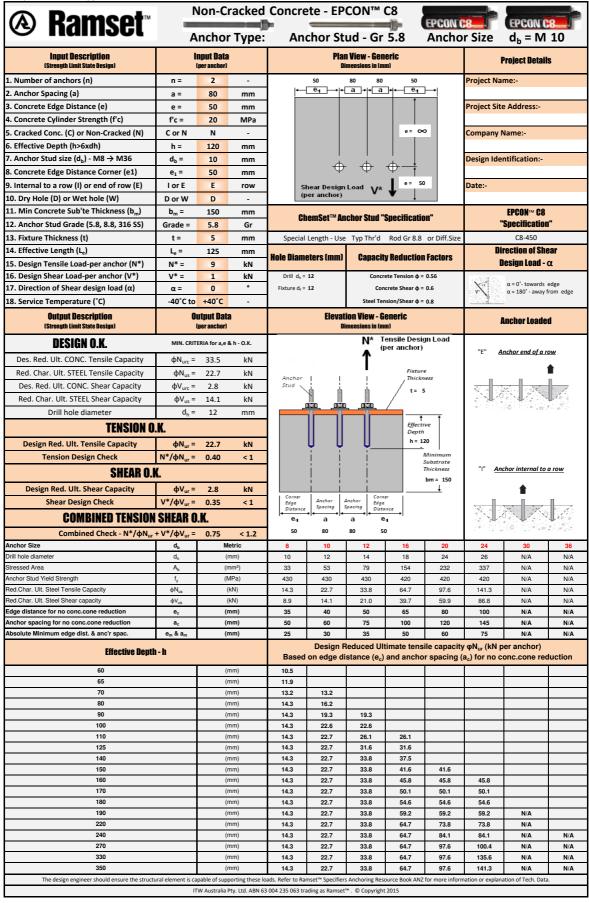
(spacing = 400mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 x k3 x Fp x Aw}$)

 $Fp = 5.3MPa \text{ (wet) or } 8.9 \text{ Mpa (dry)}, \emptyset = 0.7, k1 = 0.8, k3 = 1$ where:

Using 50x50x5 Square Washers


11.90 kN (dry) ØQ = OK

Use M10 Grade 4.6/S Steel Bolts with 50x50x5 square washers.

(spacing = 400mm max centres)

Chemical Anchoring - ChemSet Anchor Stud Design Calculator

European Technical Approval ETA-10/0309

BASE FIXINGS FOR EXTERNAL BALUSTRADE

For Occupancy types B, C3For Up to max "EXTRA HIGH" Wind

Maximum Tributary Spacing of Fixings = 400 mm

Number of row of base fixings per panel = 3

		1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.3	kN
	C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.45	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
E.H.)	Wind - external	Wuls:	0.6 x 55 x 55 /1000 x 1.3 =	2.36	kPa

Tension Forces (central bolts)

T2 4.43 1.5Q1: N*/anchor = 4.13 lkN 1.5Q2: N*/anchor = 6.64 6.19 kN 1.5Q3: 5.22 4.50 N*/anchor = kΝ Wuls: 8.21 7.07 kΝ N*/anchor =

Max N*/anchor = 8.21 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.292 kN1.2 x Weight of Al Channel= $1.2 \times (0.5 \text{ kN/m x spacing})$ = 0.24 kN

1.2G: $V^*/anchor = 0.53 \text{ kN}$

A. Fixing to Concrete

Refer to page 9 for design calculations.

Anchor Spacing= 80mm Concrete Strength, f'c = 20MPa min
Concrete Edge Dist= 50mm min Considered as NON-Cracked Concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

 $\phi N = 16.80 \text{ kN}$ OK CDR= 0.68 < 1.2 OK

ØV = 2.80 kN

Use M10 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy.

Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = 27.20 kN OK CDR= 0.24 OK

ØV = 17.86 kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

(spacing = 400mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 x k3 x Fp x Aw}$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), $\emptyset = 0.7$, k1 = 0.8, k3 = 1

Using 65x65x5 Square S/S washer

 $\emptyset Q = 12.20 \text{ kN (wet)} OK$

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 65x65x5 Square S/S washers.

(spacing = 400mm max centres)

Chemical Anchoring - ChemSet Anchor Stud Design Calculator European Technical Approval ETA-10/0309

	309 N	lon-C	rackod	Concre	to - FD	CONTM (C8 (
⊗ Ramset ™	1	Name (a) substitution)m		(1)	m)jj.	EPCON C		EPCON O	
Input Description		ncho nout Data	r Type:	And		ud - Gr 1 View - Gen		Ancho		d _b = M	
(Strength Limit State Design)		(per anchor)				mensions in (m			F	Project Detail	Is
1. Number of anchors (n)	n =	2	-		50	80 80	50		Project Na	me:-	
2. Anchor Spacing (a)	a =	80	mm		e₁ → +	a + + a	+ e ₁				
3. Concrete Edge Distance (e)	e =	50	mm						Project Site	e Address:-	
4. Concrete Cylinder Strength (f'c) 5. Cracked Conc. (C) or Non-Cracked (N)	f'c = C or N	20 N	MPa -				e= 0		Company N	lama.	
6. Effective Depth (h>6xdh)	h=	120	mm						Company i	vame:-	
7. Anchor Stud size (d _b) - M8 → M36	d _b =	10	mm						Design Ide	ntification:-	
8. Concrete Edge Distance Corner (e1)	e ₁ =	50	mm		+	• +	+ 				
9. Internal to a row (I) or end of row (E)	l or E	E	row	SI	hear Design	Load 1/*	e = 50		Date:-		
10. Dry Hole (D) or Wet hole (W)	D or W	W	-	(p	er anchor)	<u> </u>	v				
11. Min Concrete Sub'te Thickness (b _m)	b _m =	150	mm	Ch	emSet™ An	chor Stud "	Snecificatio	ın"		EPCON™ C8	
12. Anchor Stud Grade (5.8, 8.8, 316 SS)	Grade =	316	SS	011	IGHIOGE AN	onor state	эрсстванс	,,,	•	Specification	n"
13. Fixture Thickness (t)	t =	5	mm	Special	Length - Use	Typ Thr'd	Rod	or Diff.Size		C8-450	
14. Effective Length (L _e)	L _e =	125	mm	Hole Diamo	eters (mm)	Capacit	y Reduction	Factors		rection of Sh	
15. Design Tensile Load-per anchor (N*)	N* =	9	kN						0	esign Load -	α
16. Design Shear Load-per anchor (V*) 17. Direction of Shear design load (α)	V* = α =	0	kN °	Drill d _h = Fixture d _f =			ete Tension φ = crete Shear φ =		Xa	α = 0°- towards	
18. Service Temperature (°C)	α = -40°C to		-	. Acure u _f =	_		crete snear φ = sion/Shear φ =		٧. ٧	α = 180° - away	from edge
Output Description	0	utput Dat	a			ion View - G	eneric	0.0	4	Anchor Loade	ed
(Strength Limit State Design) DESIGN O.K.		per anchor)	& h - O.K.		Di		ensile Desig	jn Load			
						↑ (er anchor)		"E" <u>A</u>	nchor end of a r	<u>row</u>
Des. Red. Ult. CONC. Tensile Capacity Red. Char. Ult. STEEL Tensile Capacity	φN _{urc} =		kN	1939		ı	Fixtur				•
Des. Red. Ult. CONC. Shear Capacity	$\phi N_{us} = $ $\phi V_{urc} = $	23.8	kN kN	Anchor Stud	! !	!	Thickn				
Red. Char. Ult. STEEL Shear Capacity	φV _{urc} =		kN	2100	i i	ì	/ t= 5	i			
Drill hole diameter	d _b =	12	mm		<u> </u>						
TENSION O							† Effecti	ve			
							Depth h = 1				
Design Red. Ult. Tensile Capacity	φN _{ur} =		kN		•	<u>"</u>		Minimum			
Tension Design Check		Substrate					"I" Anchor internal to a row				
SHEAR O.	K.							bm = 150		inor internur to	<u>u 1010</u>
Design Red. Ult. Shear Capacity	φV _{ur} =	2.8	kN	Corner	+ +	Corne		<u> </u>		•	
Shear Design Check	V*/φV _{ur} =		<1	Edge Distance		Anchor Edge Spacing Dista					01.26
COMBINED TENSION	I SHEAR O	.K.		e ₋₁	a	a e	1		``\\\) ` \\"	100
Combined Check - N*/фN _{ur}	+ V*/φV _{ur} =		< 1.2	50	80	80 50)		200 02 2	8 M. A. M. 18 M.	ACT PAGE
Anchor Size	d _b		mm)	8	10 12	12 14	16 18	20	24	30	36
Drill hole diameter	d _h								00	A1/A	
Stressed Area	A,		mm²)	10 33	53	79	154	24 232	26 337	N/A N/A	N/A N/A
	A _b	(1									
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity	f _y φN _{us}	(1	mm²) MPa) (kN)	33 450 14.9	53 450 23.8	79 450 35.3	154 450 69.3	232 450 104.6	337 450 151.4	N/A N/A N/A	N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity	f _y φN _{us} φV _{us}	(1	mm²) MPa) (kN)	33 450 14.9 10.7	53 450 23.8 17.0	79 450 35.3 25.3	154 450 69.3 49.6	232 450 104.6 74.9	337 450 151.4 108.5	N/A N/A N/A	N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity	f_y ϕN_{us} ϕV_{us} e_c	(1	mm²) MPa) (kN)	33 450 14.9	53 450 23.8	79 450 35.3	154 450 69.3	232 450 104.6	337 450 151.4	N/A N/A N/A	N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction	f _y φN _{us} φV _{us}	(1	mm²) MPa) (kN) (kN)	33 450 14.9 10.7 35	53 450 23.8 17.0 40	79 450 35.3 25.3 50	154 450 69.3 49.6 65	232 450 104.6 74.9	337 450 151.4 108.5 100	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac.	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$	(1	mm²) MPa) (kN) (kN) mm)	33 450 14.9 10.7 35 50 25	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ult	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$	(1)	mm²) MPa) (kN) (kN) mmn) mmm)	33 450 14.9 10.7 35 50 25	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ult	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$	(1)	mm²) MPa) (kN) (kN) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ult	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$	(1)	mm²) MPa) (kN) (kN) mmn) mmm)	33 450 14.9 10.7 35 50 25	53 450 23.8 17.0 40 60 30	79 450 35.3 25.3 50 75 35 Reduced Ult	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$	()	mm²) MPa) (kN) (kN) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 5.9	53 450 23.8 17.0 40 60 30 Design F on edge di	79 450 35.3 25.3 50 75 35 Reduced Ult	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) MPa) MPa) MPa) MPa) MPa) Mmm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1	53 450 23.8 17.0 40 60 30 Design F on edge di	79 450 35.3 25.3 50 75 35 Reduced Ulti stance (e _c)	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) (kN) (kN) mm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.8.1 9.7	53 450 23.8 17.0 40 60 30 Design F on edge di	79 450 35.3 25.3 50 75 35 8educed Ultistance (e _c)	154 450 69.3 49.6 65 100 50 simate tens and ancho	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) MPa) MPa) MPa) MPa) MPa) Mmm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1	53 450 23.8 17.0 40 60 30 Design F on edge di	79 450 35.3 25.3 50 75 35 Reduced Ulti stance (e _c)	154 450 69.3 49.6 65 100 50	232 450 104.6 74.9 80 120 60	337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 110 125	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mmr) mmn) mmn) mmn) mmn) mmn) mmn) mmn)	33 450 14.9 10.7 35 50 25 Based 5.3 6.6 8.1 9.7 11.2 12.3 14.0	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8	79 450 35.3 25.3 50 75 35 8educed Ultstance (e _c) 9.7 11.3 13.0 15.8	154 450 69.3 49.6 65 100 50 imate tens and ancho	232 450 104.6 74.9 80 120 60 ile capacity r spacing (337 450 151.4 108.5 100 145 75 / \(\phi\)N _{ur} (kN p	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 110 125 140 150	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) MPa) MPa) MPa) MPa) MPa) MPa) MPa	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8	79 450 35.3 25.3 50 75 35 Reduced Ult stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	154 450 69.3 49.6 65 100 50 simate tens and ancho 13.0 15.8 18.7 20.8	232 450 104.6 74.9 80 120 60 ile capacity r spacing (337 450 151.4 108.5 100 145 75 7 \(\text{PN}_{ur} \) (kN \(\text{P} \) a _a) for no co	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 110 125	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) (kN) mm) mm) mm) mm) mm) mm) mm) mm) mm) m	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 11.3 13.0 15.8 18.7 20.8 22.3	79 450 35.3 25.3 50 75 35 8educed Ultistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	154 450 69.3 49.6 65 100 50 imate tens and ancho 13.0 15.8 18.7 20.8	232 450 104.6 74.9 80 120 60 ile capacity r spacing (337 450 151.4 108.5 100 145 75 7 \(\phi \text{Nu}_{tr} \((\text{KN p} \) \) a _a) for no co	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 110 125 140 150	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm²) MPa) MPa) MPa) MPa) MPa) MPa) MPa) MPa	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8	79 450 35.3 25.3 50 75 35 Reduced Ult stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8	154 450 69.3 49.6 65 100 50 simate tens and ancho 13.0 15.8 18.7 20.8	232 450 104.6 74.9 80 120 60 ile capacity r spacing (337 450 151.4 108.5 100 145 75 7 \(\text{PN}_{ur} \) (kN \(\text{P} \) a _a) for no co	N/A N/A N/A N/A N/A N/A N/A N/A N/A er anchor)	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 1110 125 140 150 160 170 180 180 190	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mme) mm) mm) mm) mm) mm) mm) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 9.7 11.2 12.3 14.0 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.8	79 450 35.3 25.3 50 75 35 Reduced Ultistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 22.5 1 27.3	154 450 69.3 49.6 65 100 50 imate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6	232 450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6	337 450 151.4 108.5 100 145 75 9N _{ur} (kN p a ₀ for no co	N/A	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 110 125 140 150 160 170 180 190 190 190 190 190 190 19	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm's) MPa) MPa) MPa) MPa) MPa) MPa) MPa) MPa	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.0 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 20.8 22.3 23.7 23.8 23.8	79 450 35.3 25.3 50 75 35 Reduced Ult stance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 35.3	154 450 69.3 49.6 65 100 50 simate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 36.9	232 450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6 36.9	337 450 151.4 108.5 75 100 145 75 7 \(\phi\)\text{Nr} (\text{IN} \text{p} \) 22.9 22.1 22.6 36.9	N/A	N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 1110 125 140 150 160 170 180 180 190	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mme) mm) mm) mm) mm) mm) mm) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 9.7 11.2 12.3 14.0 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.8	79 450 35.3 25.3 50 75 35 Reduced Ultistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 22.5 1 27.3	154 450 69.3 49.6 65 100 50 imate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6	232 450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6	337 450 151.4 108.5 100 145 75 9N _{ur} (kN p a ₀ for no co	N/A	N/A N/A N/A N/A N/A N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 60 65 70 80 90 100 1110 125 140 150 160 170 180 190 220	$\begin{array}{c} f_y \\ \Phi N_{us} \\ \Phi V_{us} \\ \end{array}$ $\begin{array}{c} \Phi V_{us} \\ e_c \\ a_c \\ \end{array}$ $\begin{array}{c} e_m \& a_m \end{array}$		mm') mm) mm) mm) mm) mm) mm) mm) mm) mm)	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 13.0 22.3 23.7 23.8 23.8 23.8	79 450 35.3 25.3 50 75 35 Reduced Ultistance (e _c) 9.7 11.3 13.0 18.7 20.8 22.9 25.1 27.3 29.6 35.3	154 450 69.3 49.6 65 100 50 imate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 36.9 42.0	232 450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6 36.9 42.0	337 450 151.4 108.5 100 145 75 7 \(\phi \text{Nu}_{\text{ur}} \) (KN p a _c) for no co	N/A	N/A
Stressed Area Anchor Stud Yield Strength Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity Red. Char. Shear capacity	f _y ΦN _{os} ΦV _{cs} ΦV _{cs} e _c a _c e _m & a _m		mmin mmin mmin mmin mmin mmin mmin mmin	33 450 14.9 10.7 35 50 25 Based 5.3 5.9 6.6 8.1 9.7 11.2 12.3 14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	53 450 23.8 17.0 40 60 30 Design F on edge di 6.6 8.1 9.7 11.3 13.0 15.8 18.7 20.8 22.3 23.8 23.8 23.8 23.8 23.8 23.8 23	79 450 35.3 25.3 25.3 50 75 35 Reduced Ultistance (e _c) 9.7 11.3 13.0 15.8 18.7 20.8 22.9 22.5 27.3 29.6 35.3 35.3 35.3 35.3	154 450 69.3 49.6 65 100 50 imate tens and ancho 13.0 15.8 18.7 20.8 22.9 25.1 27.3 29.6 36.9 42.0 69.3	232 450 104.6 74.9 80 120 60 ile capacity r spacing (20.8 22.9 25.1 27.3 29.6 36.9 42.0 50.2 67.8 74.1	337 450 151.4 108.5 100 145 75 9N _{ur} (kN p a ₀ for no contraction of the contraction of	N/A	N/A

BASE FIXINGS FOR POOL FENCE

- For Up to max "EXTRA HIGH" Wind

Maximum Tributary Spacing of Fixings = 400 mm

Number of row of base fixings per panel = 3

		1.5Q1:	$1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$	0.3	kN
	C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.45	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
(E.H.)	Wind - external	Wuls:	0.6 x 55 x 55 /1000 x 1.3 =	2.36	kPa

1200 mm Max

Deck Level

100 mm Max

80 mm

72 V

25 mm

Tension Forces (central bolts)

T2 5.18 4.88 1.5Q1: N*/anchor = kΝ 1.5Q2: N*/anchor = 7.76 7.31 kΝ 1.5Q3: 7.14 6.30 N*/anchor = kΝ Wuls: N*/anchor = 11.23 9.90 kΝ

Max N*/anchor = 11.23 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.34 kN1.2 x Weight of Al Channel= $1.2 \times (0.5 \text{ kN/m x spacing})$ = 0.24 kN

1.2G: $V^*/anchor = 0.58 \text{ kN}$

A. Fixing to Concrete

Refer to page 11 for design calculations.

Anchor Spacing= 80mm Concrete Strength, f'c = 20MPa min
Concrete Edge Dist= 50mm min Considered as NON-Cracked Concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 16.80 kN OK CDR= 0.88 < 1.2 OK

ØV = 2.80 kN

Use M10 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy.

Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = **27.20** kN OK CDR= 0.33 OK ØV = **17.86** kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

(spacing = 400mm max centres)

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 x k3 x Fp x Aw}$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), \emptyset =0.7, k1=0.8, k3=1

Using 65x65x5 Square S/S washer

 $\emptyset Q = 12.20 \text{ kN (wet)} OK$

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 65x65x5 Square S/S washers.

Chemical Anchoring - ChemSet Anchor Stud Design Calculator

European Technical Approval ETA-10/0		lon-C	racked	Concre	ete - EP			EDGGT		FDOOR		
⊗ Ramset ™	Δ	ncho	r Type:	⊫ An∈	chor St	ud - Gr		EPCON (d _b = M		
Input Description (Strength Limit State Design)		nput Data (per anchor)	1			n View - Gen imensions in (m				Project Detai	Is	
1. Number of anchors (n)	n =	2	-		50	80 80	50		Project Na	me:-		
2. Anchor Spacing (a)	a =	80	mm		e ₄ →	a ++ a		,				
3. Concrete Edge Distance (e) 4. Concrete Cylinder Strength (f'c)	e =	50	mm MD-						Project Site	e Address:-		
5. Cracked Conc. (C) or Non-Cracked (N)	f'c = C or N	20 N	MPa -				e = 🗪	0	Company I	Name:-		
5. Effective Depth (h>6xdh)	h =	120	mm						company .			
7. Anchor Stud size (d _b) - M8 → M36	d _b =	10	mm			 	<u> </u>		Design Identification:-			
3. Concrete Edge Distance Corner (e1)	e ₁ =	50	mm		Ψ	· •	Ψ <u></u>					
9. Internal to a row (I) or end of row (E)	I or E	E	row		hear Design er anchor)	Load V*	e = 50	0	Date:-			
LO. Dry Hole (D) or Wet hole (W) L1. Min Concrete Sub'te Thickness (b _m)	D or W	W	-	u-	er anchor)		• +			FD00N 00		
12. Anchor Stud Grade (5.8, 8.8, 316 SS)	b _m = Grade =	150 316	mm SS	Ch	iemSet™ Ar	chor Stud "	Specification	on"		EPCON™ C8 Specification		
3. Fixture Thickness (t)	t =	5	mm	Special	Length - Use	Typ Thr'd	Rod	or Diff.Size		C8-450		
4. Effective Length (L _e)	L _e =	125	mm				u Bodustio	- Footoro	Di	rection of Sh	ear	
L5. Design Tensile Load-per anchor (N*)	N* =	12	kN		eters (mm)		y Reduction			Design Load -	α	
16. Design Shear Load-per anchor (V*)	V* =	1	kN °	Drill d _h =			ete Tension φ =		Val	α = 0°- towards	edge	
17. Direction of Shear design load (α) 18. Service Temperature (°C)	α = -40°C to	0 +40°C	-	Fixture d _f =	12		ncrete Shear φ = nsion/Shear φ =		v-\	α = 180° - away		
Output Description	0	utput Dat				tion View - G	eneric	- 0.0		Anchor Loade	ed	
(Strength Limit State Design) DESIGN O.K.		ERIA for a,e	& h - O.K.		0		ensile Desi					
Des. Red. Ult. CONC. Tensile Capacity	φN _{urc} =		kN	100		^ "	per anchor)	'	"E" <u>A</u>	nchor end of a	row	
Red. Char. Ult. STEEL Tensile Capacity	φN _{us} =		kN			ı	Fixtur					
Des. Red. Ult. CONC. Shear Capacity	φV _{urc} =		kN	Anchor Stud	1 1	-	Thicks		er	26 - 36 -	0: 09	
Red. Char. Ult. STEEL Shear Capacity	φV _{us} =	17.0	kN]		0530_		•				
Drill hole diameter	d _h =	12	mm				-	<u> </u>	07 27 19	10 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	हींस की दो	
TENSION O). K .						Effect Depti					
Design Red. Ult. Tensile Capacity	фN _{ur} =	16.8	kN		ŲŲ	<u> </u>	h = 1	20				
Tension Design Check	N*/φN _{ur} =	0.72	< 1			į		Minimum Substrate				
SHEAR O.	K.							Thickness bm = 150	"I" <u>An</u>	chor internal to	a row	
Design Red. Ult. Shear Capacity	фV _{ur} =	2.8	kN	Corner	i i	Corn		<u> </u>		•		
Shear Design Check	V*/φV _{ur} =		<1	Edge Distance		Anchor Edge Spacing Dista	.		8	× - ×	0.1.25	
COMBINED TENSION	I SHEAR O	.K.		e ₄	a		24		, T		100	
Combined Check - N*/фN _{ur}			< 1.2	50	80	80 5			47 44 -		CALL PROPERTY.	
Anchor Size Drill hole diameter	d _b		mm)	8 10	10 12	12 14	16 18	20 24	24 26	30 N/A	36 N/A	
Stressed Area	A _b		nm²)	33	53	79	154	232	337	N/A	N/A	
Anchor Stud Yield Strength	f _y		MPa)	450	450	450	450	450	450	N/A	N/A	
Red.Char. Ult. Steel Tensile Capacity Red.Char. Ult. Steel Shear capacity	φN _{us} φV _{us}		(kN) (kN)	14.9 10.7	23.8 17.0	35.3 25.3	69.3 49.6	104.6 74.9	151.4 108.5	N/A N/A	N/A N/A	
Edge distance for no conc.cone reduction	e _c	(1	mm)	35	40	50	65	80	100	N/A	N/A	
Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac.	a _c e _m & a _m		mm) mm)	50 25	60 30	75 35	100 50	120 60	145 75	N/A N/A	N/A N/A	
			,	20		1			γφN _{ur} (kN p	1	19/8	
Effective Dept	n-n			Based						onc.cone re	duction	
60			mm)	5.3								
65 70			mm)	5.9 6.6	6.6							
80		(1	mm)	8.1	8.1							
90			mm)	9.7	9.7	9.7						
110			mm) mm)	11.2 12.3	11.3 13.0	11.3	13.0					
125		(1	mm)	14.0	15.8	15.8	15.8					
140 150			mm) mm)	14.9 14.9	18.7 20.8	18.7 20.8	18.7 20.8	20.8				
160			mm)	14.9	22.3	22.9	22.9	22.9	22.9			
170			mm)	14.9	23.7	25.1	25.1	25.1	25.1			
180 190			mm)	14.9 14.9	23.8 23.8	27.3 29.6	27.3 29.6	27.3 29.6	27.3 29.6	N/A		
220			mm)	14.9	23.8	35.3	36.9	36.9	36.9	N/A		
240			mm)	14.9	23.8	35.3	42.0	42.0	42.0	N/A	N/A	
270			mm) mm)	14.9 14.9	23.8 23.8	35.3 35.3	50.2 67.8	50.2 67.8	50.2 67.8	N/A N/A	N/A N/A	
330		,										
330 350		(1	mm)	14.9	23.8	35.3	69.3	74.1	74.1	N/A	N/A	

6. Wind Load Assessment for Pool Fence

From the testing

Panel size used = 1200mm wide x 1100mm high glass (1000mm height from FFL) Maximum Target Load (Test C) = 422.3kg at 500mm from FFL

Bending Moment along the base (tested) = 2.49 kNm

Pool Fence

Panel size = 1200mm wide x 1300mm high glass (1200mm height from FFL)

For EXTRA High Wind (EH):

Vuls = 55m/s Qu = 1.815 kPa External Pressure Coefficient, say = 1.3 Design Wind Load, Wu = 2.3595 kPa

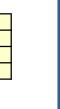
Bending Moment along the base (from wind) = 2.38 kNm (less than 2.49 kNm tested)
Hence OK

Based from the assessment, the pool fence with size of 1200mm wide x 1300mm high glass (1200mm height from FFL) is satisfactory for up to maximum Extra High Wind.

1000 mm (FFL) max

Deck Level

mm Max mm mm


7. Alternative Base Fixing into Timber (at 300mm max centres)

- Balustrade - C3 load type - Extra High Wind

Maximum Tributary Spacing of Fixings = 300 mm

Number of row of base fixings per panel = 3

	C3 loading	1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.3	kN
		1.5Q2:	1.5 x 0.75kN/m x trib spacing =	0.338	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
	Wind - Extra High	Wuls:	0.6 x 55 x 55 /1000 x 1.3 =	2.36	kPa

T4 | T0 |

Tension Forces (central bolts)

	11	_	
N*/anchor =	4.26	3.96	k٨
N*/anchor =	4.79	4.45	kΝ
N*/anchor =	3.62	3.10	kΝ
N*/anchor =	5.70	4.88	kΝ
	N*/anchor = N*/anchor =		N*/anchor = 4.26 3.96 N*/anchor = 4.79 4.45 N*/anchor = 3.62 3.10

ht (Glass finished height from top =1055mm

fixings)

Max N*/anchor = 5.70 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = $1.2 \times (28 \text{ kN/m} 3 \times \text{thickness} \times \text{Area}) = 0.21 \text{ kN}$ 1.2 x Weight of Al Channel= $1.2 \times (0.5 \text{ kN/m} \times \text{spacing}) = 0.18 \text{ kN}$

1.2G: $V^*/anchor = 0.39 kN$

Combined Load (1.2G + 1.5Q or Wuls)

Additional N* due to 1.2G = **0.24** kN

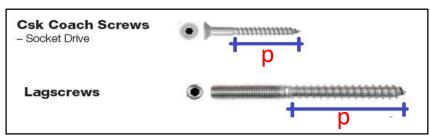
e = **50** mm

Max N*/anchor = 5.94 kN

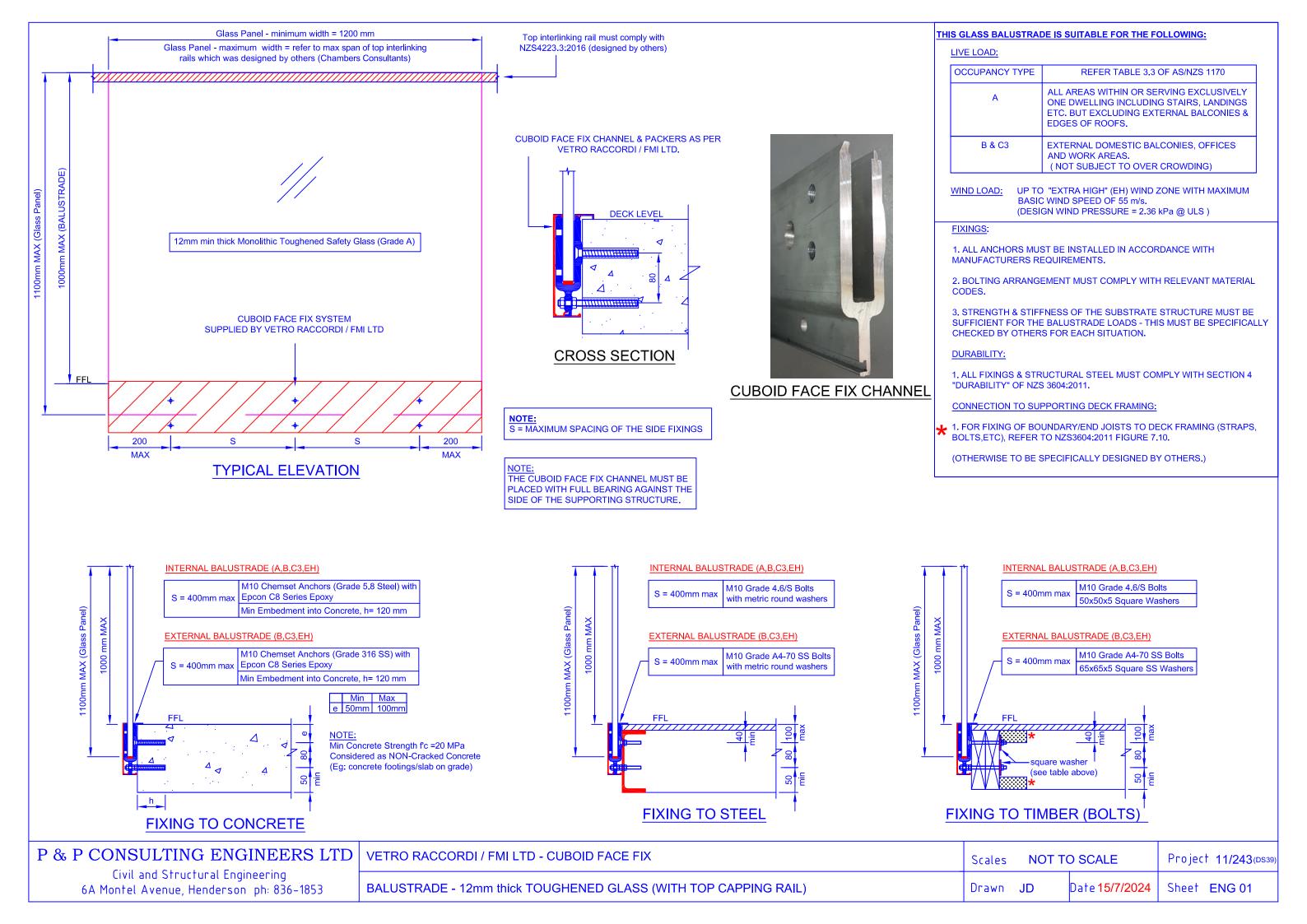
Fixing into Timber using Coach Screws / Lagscrews

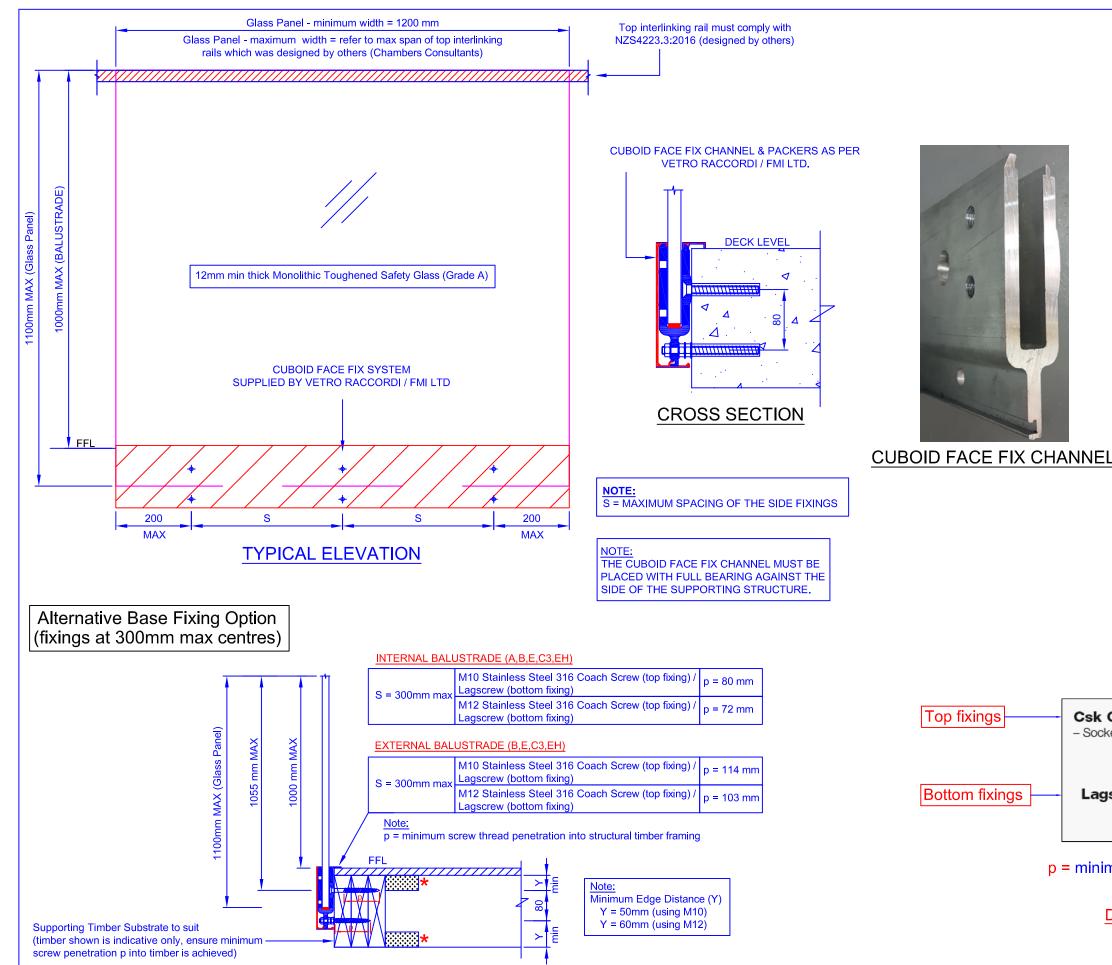
As per NZS3603, Timber Group J5, Screws in Withdrawal.(ØQ = Ø n k1 K p Qk)

where: \varnothing =0.7, k1=1 (brief), K=0.7 (wet) or 1 (dry)


Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

<u>Using M10 Coach Screws</u> (spacing = 300mm max centres)


 $\emptyset Q = 52.43 \text{ N/mm (wet)}$ Min Screw Penetration, p= 114 mm (wet) $\emptyset Q = 74.9 \text{ N/mm (dry)}$ Min Screw Penetration, p= 80 mm (dry)


Using M12 Coach Screws (spacing = 300mm max centres)

 $\phi Q = 57.82 \text{ N/mm (wet)}$ Min Screw Penetration, p= 103 mm (wet) $\phi Q = 82.6 \text{ N/mm (dry)}$ Min Screw Penetration, p= 72 mm (dry)

MINIMUM REQUIREMENTS FOR COACHSCREWS / LAGSCREWS					
Option 1: Using M10 Stainless Steel 316	Minimum Screw Penetration (p) into timber (mm) =	114	external		
		80	internal		
Option 2: Using M12 Stainless Steel 316	Minimum Screw Penetration (p) into timber (mm) =	103	external		
		72	internal		

FIXING TO TIMBER (COACHSCREWS/LAGSCREWS)

THIS GLASS BALUSTRADE IS SUITABLE FOR THE FOLLOWING:

LIVE LOAD:

OCCUPANCY TYPE	REFER TABLE 3.3 OF AS/NZS 1170
А	ALL AREAS WITHIN OR SERVING EXCLUSIVELY ONE DWELLING INCLUDING STAIRS, LANDINGS ETC. BUT EXCLUDING EXTERNAL BALCONIES & EDGES OF ROOFS.
B & C3	EXTERNAL DOMESTIC BALCONIES, OFFICES AND WORK AREAS. (NOT SUBJECT TO OVER CROWDING)

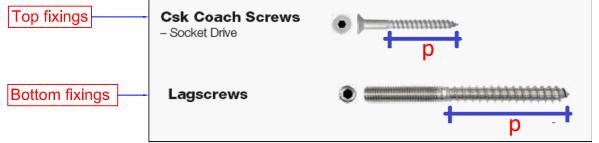
WIND LOAD:

UP TO "EXTRA HIGH" (EH) WIND ZONE WITH MAXIMUM
BASIC WIND SPEED OF 55 m/s.

(DESIGN WIND PRESSURE = 2.36 kPa @ ULS)

FIXINGS:

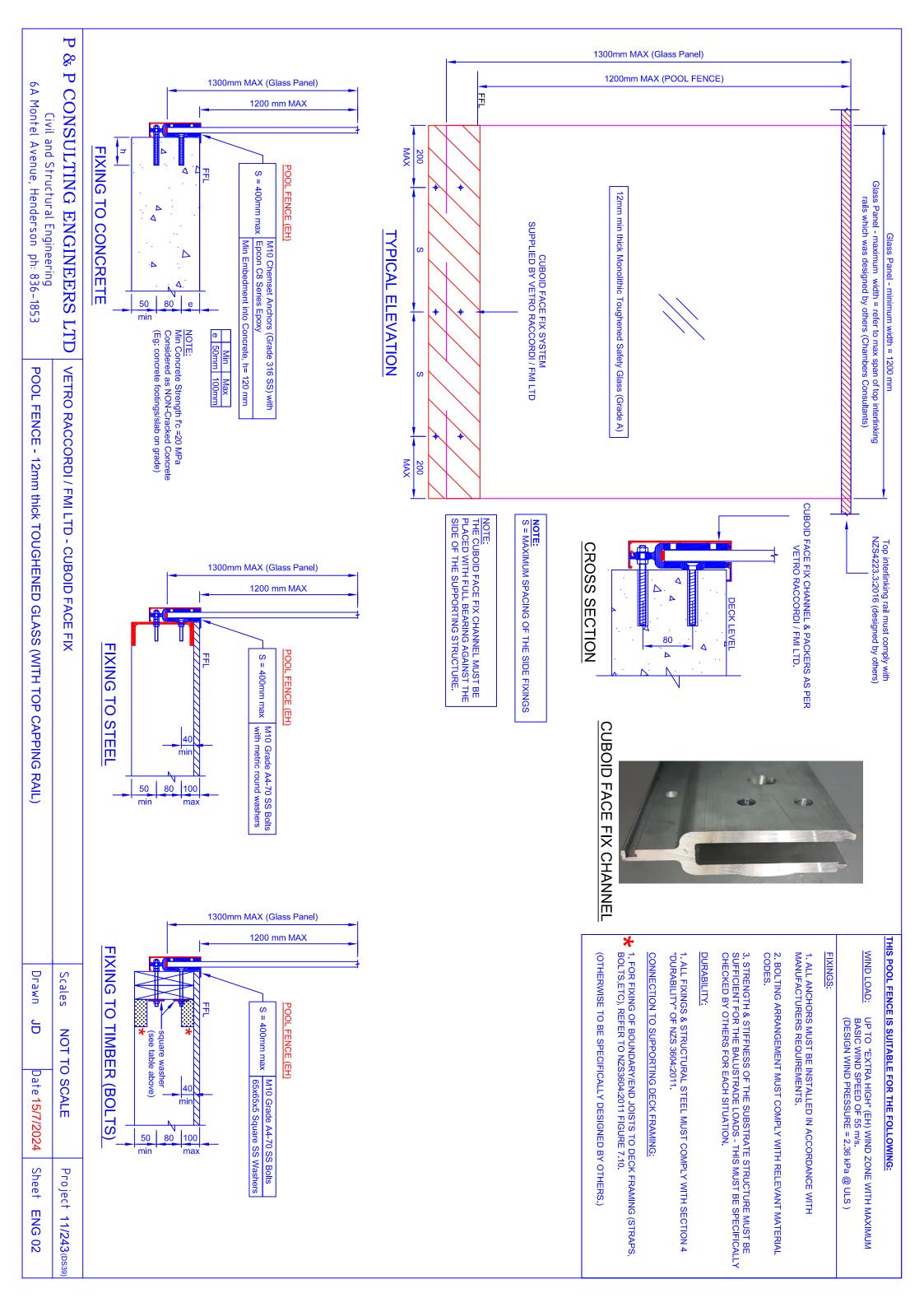
- 1. ALL ANCHORS MUST BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS REQUIREMENTS.
- 2. BOLTING ARRANGEMENT MUST COMPLY WITH RELEVANT MATERIAL CODES
- 3. STRENGTH & STIFFNESS OF THE SUBSTRATE STRUCTURE MUST BE SUFFICIENT FOR THE BALUSTRADE LOADS THIS MUST BE SPECIFICALLY CHECKED BY OTHERS FOR EACH SITUATION.


DURABILITY:

1. ALL FIXINGS & STRUCTURAL STEEL MUST COMPLY WITH SECTION 4 "DURABILITY" OF NZS 3604:2011.

CONNECTION TO SUPPORTING DECK FRAMING:

★ 1. FOR FIXING OF BOUNDARY/END JOISTS TO DECK FRAMING (STRAPS, BOLTS,ETC), REFER TO NZS3604:2011 FIGURE 7.10.


(OTHERWISE TO BE SPECIFICALLY DESIGNED BY OTHERS.)

p = minimum screw thread penetration into structural timber framing

DETAILS OF COACH SCREWS / LAGSCREWS

P & P CONSULTING ENGINEERS LTD	VETRO RACCORDI / FMI LTD - CUBOID FACE FIX	Scales	NOT T	O SCALE	Projec	c† 11/243 (DS39)
Civil and Structural Engineering 6A Montel Avenue, Henderson ph: 836–1853	BALUSTRADE - 12mm thick TOUGHENED GLASS (WITH TOP CAPPING RAIL)	Drawn	JD	Date 27/9/2024	Sheet	ENG 01-A

