P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ
Dr. H.D.W. FENDALL (Consultant)

B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ

6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds52 20 October 2023

FMI Building Innovation Ltd / Vetro Raccordi

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE

<u>USING TILT-LOCK BASE CHANNEL SYSTEM (SIDE MOUNTED) &</u> <u>12mm thick TOUGHENED GLASS (with Top Capping Rail)</u>

Note:

Case A (done by testing)

= Very High Wind, 1.1m max Glass Height from top of base channel

Case B (additional assessment)

= Extra High Wind, 0.95m max Glass Height from top of base channel

	INDEX	PAGE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B and C3.	
	The glass balustrade had also been tested for max "Very High" wind load.	
3.	Load Tests	3
4.	Tests Arrangement & Results	4
4.1	<u>Balustrade</u>	4
	Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by tilt-lock base channel syst (side mounted) and with top capping rail was sufficient for the following:	em
	Occupancy types A, B, C3Up to max "Very High" Wind	
5.	Base Fixings	6
	Refer to Summary Drawing ENG 01 for reference.	
5.1	Base Fixings for Internal Balustrade ➤ For Occupancy type A	6
5.2	Base Fixings for External Balustrade (at 400mm max centres) ➤ For Occupancy types B, C3 ➤ For Up to max "Very High" Wind	9
5.3	Base Fixings for External Balustrade (at 200mm max centres) ➤ For Occupancy types B, C3 ➤ For Up to max "Very High" Wind	12
6.	Additional Assessment of Glass Balustrade in Extra High Wind	15
	Note: The following are the parameters considered in the assessment.	
	Case A (done by testing) = Very High Wind, 1.1m max Glass Height from top of base channel	
	Case B (additional assessment) = Extra High Wind, 0.95m max Glass Height from top of base channel	
	The required bending moment at the base for Case B is less than the Case A by 8%	6 .

Based on this additional assessment, the side-mounted glass balustrade with 0.95m max glass height from top of base channel under Extra High Wind (case B) is less critical than the original test setup (case A).

Therefore, it is concluded that the side-mounted glass balustrade with 0.95m max glass height from top of base channel under Extra High Wind (case B) can be covered from the testing results of the side-mounted glass balustrade with 1.1m max glass height from top of base channel under Very High Wind (case A).

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by FMI Building Innovation Ltd / Vetro Raccordi.

Building Code Clause(s).......B1,F2,F4

PRODUCER STATEMENT - PS1 - DESIGN

(Guidance on use of Producer Statements (formerly page 2) is available at www.engineeringnz.org)

ISSUED BY:	P & P CONSULTING ENGINEE	RS LID		
		(Design Firm)		
TO:	FMI Building Innovation Ltd / Ve	etro Raccordi		
		wner/Developer)		
TO BE SUPPLIED TO:	VARIOUS LOCAL AUTHORITY (Buildir	/ ng Consent Authority)		
IN RESPECT OF: Glass	Balustrade with Tilt-lock Base Ch (Descrip	nannel(side mounted) ar otion of Building Work)	nd 12mm thick Toughe	ened Glass
AT: VARIO	OUS SITES (Refer to drawing she	eet ENG01 & ENG02) (Address)		
Town/City:	LOT (Address)		DP \$0)
We have been engaged b	y the owner/developer referred to	above to provide:		
GLASS TESTING REVIE	W AND DESIGN FOR BASE FIX	ING; ADDITIONAL ASS	SESSMENT	
	(Exte	ent of Engagement)		
services in respect of the	requirements of Clause(s)r	.F4of th	ne Building Code for:	
☐ All or ■ Part only (as	specified in the attachment to th	is statement), of the pro	posed building work.	
= -	us has been prepared in accorda			
Compliance Document	s issued by the Ministry of Busine	ess, Innovation & Emplo	oyment(verification method	or /acceptable solution)
Alternative solution as	per the attached schedule			
The proposed building wo	rk covered by this producer state	ment is described on the	e drawings titled:	
	I LTD-TILT-LOCK BASE CHANI tion, and other documents set ou			;DRAWING ENG ₀ 01-02
	Firm, and subject to: bllowing design assumptions s meeting their performance spec		ESIGN SUMMARY	
documents provided or lis	grounds that a) the building, if co ted in the attached schedule, will dertaken the design have the nec oservation:	comply with the relevan	nt provisions of the Bui	lding Code and that b)
□CM1 □CM2 ■CM	3 CM4 CM5 (Engineering C	Categories) or as per a	greement with owner/de	eveloper (Architectural)
(Name of	Design Professional)			
I am a member of: Eng The Design Firm issuing the The Design Firm is a men	nineering New Zealand \[\] NZIA his statement holds a current policy heer of ACENZ: \[\]	and hold the following o of Professional Indemn	qualifications:BE(Civil nity Insurance no less th), CPEng nan \$200,000*.
SIGNED BYParmil Praka	Sh (Name of Design Professional)	(Sigr	nature)	chl
ON BEHALF OF	P & P CONSULTING ENGIN	NEERS LTD		Date. 20 Oct 2023

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

NZS 4223.3:2016 Glazing In Buildings AS/NZS 1170:2002 Loadings Code NZS 3404:1997 Structural Steel NZS 3101:1995 Concrete NZS 3603:1993 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

Occupancy	Specific Uses	Top E	Top Edge		
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa	
B & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN	

Wind Loads (VERY HIGH)

Design for Very Hig	h Winds in	terms of th	ne Wind Speed categories in	
·	NZS 3604:	2011 (up to	50 m/s).	
$V_{sit,\beta}(Ultimate)$	=	50.0	m/s	
V _{sit,β} (Serviceability)	=	37.3	m/s	
510,000				
q	=	1.50	kPa (ULS)	
and	=	0.83	kPa (SLS)	
For external barriers us	e Cp =	1.30		
For internal barriers use	e Cp =	0.30		
Wind Load = q x	(Cp =	1.95	kPa (ULS)	
	=	1.08	kPa (SLS)	

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

LOAD TESTS

Location of Tests: 49 Woodside Avenue, Auckland

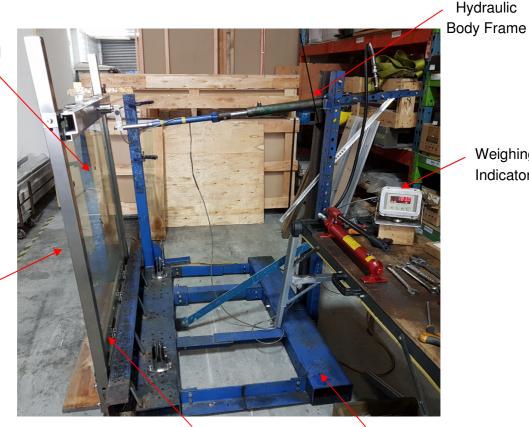
Date of Tests: July 2018

Test Description: Load testing of Glass Balustrade

(Panel Tested = 1180mm wide x 1200mm high glass panel)

System Description: The glass balustrade which was supplied by FMI Building Innovations Ltd /

> Vetro Raccordi Ltd. comprised of 12mm thick Toughened (Grade A) Safety Glass supported by tilt-lock base channel system (side mounted) and with top


capping rail fixed to side posts.

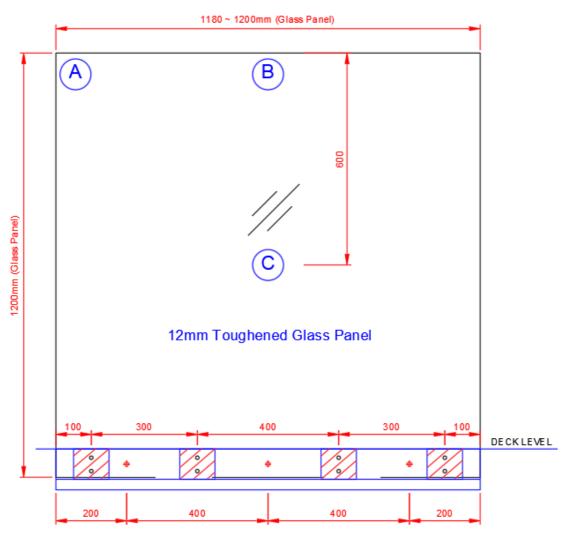
Setup / Procedure:

The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with tilt-lock base channel system (side mounted). This channel system was bolted to the steel frame assembly with M12 fixings as shown below. Top capping rail was also installed on the glass panel which was fixed to the side posts acting as the supporting neighboring glass panels.

Hydraulic Body Frame/Ram and load cell or weighing indicator were used to attain the required test loads.

12mm thick Toughened Glass Panel with Top Capping Rail

Weighing Indicator


Side Post

Tilt-lock Base Channel System (side mounted)

Steel Frame Assembly

4. TESTS ARRANGEMENT & RESULTS

4.1 BALUSTRADE

(spacing of M 12 side fixings to steel framing assembly)

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

TEST RESULTS (Fracture Check)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122.0	16	No Fracture
В	183.0	16	No Fracture
С	380.7	16	No Fracture

TEST RESULTS (Deflection Check)

Tooto	Target Load	Deflec	tion @ Top ((mm)	Remarks
Tests	@ SLS (Kg)	Sample 1	Sample 2	Sample 3	nemarks
Α	61.2	13	14	13	Passed
В	91.7	14	15	14	Passed
С	159.2	10	11	10	Passed

Allowable Deflection = H/30 = 40 mm

Based on the testing, the glass balustrade which comprised of 12mm thick Toughened (Grade A) Safety Glass supported by tilt-lock base channel system (side mounted) and with top capping rail was sufficient for the following:

- ➤ Occupancy types A, B, C3
- ➤ Up to max "Very High" Wind

Base Fixings 5.0 6

Refer to Summary Drawing ENG 01 for reference.

BASE FIXINGS FOR INTERNAL BALUSTRADE

- For Occupancy type A

Maximum Tributary Spacing of Fixings = 400 mm 3

Number of base fixings per panel =

1.5Q1:

5.1

 $1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$ 0.3 kN

A loading	1.5Q2:	$1.5 \times 0.35 \text{kN/m} \times \text{trib spacing} =$	0.21	kΝ
	1.5Q3:	1.5 x 0.5kPa =	0.75	kPa
Wind - internal	Wuls:	$0.6 \times 50 \times 50 / 1000 \times 0.3 =$	0.45	kPa

Tension Force for Upper Fixing @ 400 mm max spacing (Central Bolts):

1.5Q1: $N^*/anchor = 8.51$ kΝ 1.5Q2: $N^*/anchor = 5.95$ kΝ 1.5Q3: $N^*/anchor = 4.77 kN$ $N^*/anchor = 2.86 kN$ Wuls:

Max N*/anchor = 8.51 kN

max ht = 1250

Deck Level

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.302 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.24 kN

> 1.2G: $V^*/anchor = 0.54 kN$

A. Fixing to Concrete

Refer to page 8 for design calculations.

Anchor Spacing= 400 mm Concrete Strength, f'c = 20MPa min Concrete Edge Dist= 60mm min Considered as Cracked concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 8.80 kN OK CDR= 1.04 < 1.2 OK

ØV = **7.80** kN OK

Use M10 Chemset Anchors (Grade 5.8 Steel) with Epcon C8 Series Epoxy. Drilled hole depth to be 120 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade 4.6/S

ØN = **18.56** kN OK CDR= 0.51 OK

ØV = 9.62 kN OK

Use M10 Grade 4.6/S Steel Bolts with metric round washer per fixing.

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 } x \text{ k3 } x \text{ Fp } x \text{ Aw}$)

where: \emptyset =0.8, k1=1 (brief), k3=1, Fp = 5.3MPa (wet) or 8.9 Mpa (dry)

Using 50x50x5 Square Washers

ØQ = 16.99 kN (dry) OK

Use M10 Grade 4.6/S Steel Bolts with 50x50x5 Square Washers.

(spacing = 400mm max centres)

D. Fixing to Timber Using Coach Screws

As per NZS3603, Timber Group J5, Screws in Withdrawal. (ØQ = Ø n k1 K p Qk)

where: \emptyset =0.7, k1=1 (brief), K=0.7 (wet) or 1 (dry)

Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

Using M10 Coach Screws

 $\phi Q = 74.9 \text{ N/mm (dry)}$ Min Penetration = 114 mm (dry)

Using M12 Coach Screws

 $\emptyset Q = 82.6 \text{ N/mm (dry)}$ Min Penetration = 103 mm (dry)

Cracked Concrete - ChemSet Anchor Stud Design Calculator

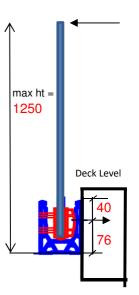
European Technical Approval: ETA-10/0	309										
CRACKED Concrete - EPCON™ C8											
® Ramset[™]	Α	Anchor Type: Anchor Stud - C				ud - Gr	5.8	Ancho		d _b = M	
Input Description (Strength Limit State Design)		nput Data (per anchor)				n View - Gen imensions in (m			ı	Project Detail	s
1. Number of anchors (n)	n =	3	-		60 e₁ → +	400 400		1	Project Na	me:-	
2. Anchor Spacing (a)	a =	400	mm		E1 →	a +	+ e ₁		D		
Concrete Edge Distance (e) Concrete Cylinder Strength (f'c)	e = f'c =	60 20	mm MPa	-					Project Site	e Address:-	
5. Cracked Conc. (C) or Non-Cracked (N)	C or N	C	IVIFA	1			e= 0<	5	Company I	Name:-	
6. Effective Depth (h>6xdh)	h =	120	mm	1							
7. Anchor Stud size (d _b) - M8 → M30	d _b =	10	mm		 	 	<u> </u>		Design Ide	ntification:-	
8. Concrete Edge Distance Corner (e1)	e ₁ =	60	mm		Ψ	• 🕁	Ψ <u></u>				
9. Internal to a row (I) or end of row (E)	I or E	E	row		hear Design er anchor)	Load V*	e = 60		Date:-		
10. Dry Hole (D) or Wet hole (W)	D or W	W	-	u-	per anichor)						
11. Min Concrete Sub'te Thickness (b _m) 12. Anchor Stud Grade (5.8, 8.8, 316 SS)	b _m =	150	mm	Ch	nemSet™ Ar	nchor Stud "	Specification	n"	EPCON	™ C8 "Specifi	cation"
13. Fixture Thickness (t)	Grade =	5.8	Gr mm	Special	Length - Use	Typ Thr'd	Rod Gr 8 8	or Diff Size		Part No. C8-45	0
14. Effective Length (L _p)	L _o =	125	mm		_					rection of Sho	
15. Design Tensile Load-per anchor (N*)	N* =	0	kN	Hole Diam	eters (mm)	Capacit	y Reduction	Factors		esign Load -	
16. Design Shear Load-per anchor (V*)	V* =	0	kN	Drill d _h =	12	Conc Tension	1/γ _{Msp} = φ _c =	0.56	C2475	-	
17. Direction of Shear design load (α)	α =	0	0	Fixture d _f =	12	Conc Shear	$1/\gamma_{Mc} = \varphi_c =$	0.67	1	$\alpha = 0^{\circ}$ - towards $\alpha = 180^{\circ}$ - away	
18. Service Temperature (°C)	-40°C to	+40°C	-						policida (a)		
Output Description (Strength Limit State Design)		utput Dat (per anchor)				tion View - G imensions in (m	m)		ı	Anchor Loade	d
DESIGN O.K.	MIN. CRIT	ERIA for a,e	& h - O.K.				ensile Desi per anchor)		11511		
Des.Pullout & CONC.Tensile Resistance	N _{Rd,p} =	8.8	kN	88					"E" <u>A</u>	nchor end of a r	<u>ow</u>
Cracked Conc. STEEL Tensile Resistance	N _{Rd,s} =	19.3	kN	Anchor		•	Fixtur Thick				1
Design CONC. Edge Shear Resistance	V _{Rd,c} =	7.8	kN	Stud		m	/ t= !		Q 73	x	0:1:99
Cracked Conc. STEEL Shear Resistance	V _{Rd,s} =	12.0	kN		0530 053	1 1830	/		, III - 0	1	/ o =
Des. Cracked Conc. Pryout Failure	V _{Rd,cp} =		kN				-	<u> </u>			
Drill hole diameter	d _h =	12	mm				Effect: Depth				
TENSION O	.K.				ŲŲ	U_	h = 1	.			
Design Tensile Resistance	N _{Rd} =	8.8	kN		į į	į		Minimum Substrate			
Tension Design Check	N*/N _{Rd} =	0.00	<1		1 1			Thickness bm = 150			
SHEAR O.I	⟨ .				1 1			<u> </u>	"I" <u>An</u>	chor internal to	a row
Design Shear Resistance	V _{Rd} =	7.8	kN	Corner Edge Distance		Anchor Edge Spacing Dist	.			•	
Shear Design Check	V*/V _{Rd} =	0.00	<1	e ₄	+ 	—→ -)-i		100	386	- 0 ; JeC
COMBINED TENSION	SHEAR 0	.K.		60	400	400 6	0				100
Combined Check - N*/N _R	_d + V*/V _{Rd} =	0.00	< 1.2						1000	71.0 T. 1.1.0	\$11.18 p. 15
Anchor Size	d _b		letric	8	10	12	16	20	24	30	36
Drill hole diameter Stressed Area	d _h		mm) mm²)	10 33	12 53	14 79	18 154	24 232	26 337	N/A N/A	N/A N/A
Anchor Stud Yield Strength	f _y		MPa)	430	430	430	420	420	420	N/A	N/A
Cracked Conc. Steel Tensile Resistance	N _{Rd,s}		(kN)	12.0	19.3	28.0	52.7	82.0	118.0	N/A	N/A
Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction	V _{Rd,s} e _c		(kN) mm)	7.2 1xh	12.0 1xh	16.8 1xh	31.2 1xh	48.8 1xh	70.4 1xh	N/A N/A	N/A N/A
Anchor spacing for no conc.cone reduction	a _c	_	mm)	2xh	2xh	2xh	2xh	2xh	2xh	N/A N/A	N/A N/A
Absolute Minimum edge dist. & anc'r spac.	e _m & a _m	(mm)	40	50	60	80	100	120	N/A	N/A
Effective Depth	ı - h			Bassal					N per ancho		d
65		,	mm)	6.0	on eage d	istance (é _c)	and ancho	spacing (a _c) for no c	onc.cone red	Juction
70			mm) mm)	6.0	8.1						
80			mm)	7.4	9.3						
90			mm)	8.4	10.4	11.9					
100 110			mm) mm)	9.3	11.6 12.8	13.2 14.5	16.5				
120			mm)	11.1	13.9	15.8	18.8				
125			mm)	11.6	14.5	16.5	20.0				
150 160			mm) mm)	12.0 12.0	17.4 18.6	19.8 21.1	24.9 26.6	26.2 28.9	28.9		
170			mm)	12.0	19.3	22.4	28.2	31.6	31.6		
190			mm)	12.0	19.3	25.1	31.6	37.4	37.4		
210 240			mm)	12.0	19.3	27.7 28.0	34.9	43.4 49.8	43.4	N/A	
280			mm) mm)	12.0 12.0	19.3 19.3	28.0	39.9 46.5	58.2	53.1 66.9	N/A N/A	
350			mm)	12.0	19.3	28.0	52.7	72.7	87.2	N/A	
450			mm)	12.0	19.3	28.0	52.7	82.0	112.2	N/A	N/A
550 The design engineer should ensure the struct	ural element is ca		mm) porting these lo	12.0 oads. Refer to Rai	19.3 mset™ Specifier	28.0 s Anchorng Reso	52.7 ource Book ANZ	82.0 for more inforn	118.0 nation or explana	N/A ation of Tech. Data	N/A
				3 004 235 063 tra					,		

5.2

BASE FIXINGS FOR EXTERNAL BALUSTRADE (at 400mm max centres)

For Occupancy types B, C3For Up to max "Very High" Wind

Maximum Tributary Spacing of Fixings = 400 mm


Number of base fixings per panel = 3

		1.5Q1:	$1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$	0.3	kN
	C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.45	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
(V.H)	Wind - external	Wuls:	0.6 x 50 x 50 /1000 x 1.3 =	1.95	kPa

Tension Force for Upper Fixing @ 400 mm max spacing (Central Bolts):

1.5Q1: $N^*/anchor = 8.51 \text{ kN}$ 1.5Q2: $N^*/anchor = 12.76 \text{ kN}$ 1.5Q3: $N^*/anchor = 9.54 \text{ kN}$ Wuls: $N^*/anchor = 12.41 \text{ kN}$

Max N*/anchor = 12.76 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.302 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.24 kN

1.2G: $V^*/anchor = 0.54 \text{ kN}$

A. Fixing to Concrete

Refer to page 11 for design calculations.

Anchor Spacing= 400 mm Concrete Strength, f'c = 20MPa min
Concrete Edge Dist= 60mm min Considered as Cracked concrete

Using M12 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 12.90 kN OK CDR= 1.06 < 1.2 OK

 $\emptyset V = 8.10 \text{ kN}$

Use M12 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy.

Drilled hole depth to be 200 mm min into concrete.

(spacing = 400mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

 $\phi N = 27.20 \text{ kN}$ OK CDR= 0.36 OK

ØV = **17.86** kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 x k3 x Fp x Aw}$)

where: \emptyset =0.8, k1=1 (brief), k3=1, Fp = 5.3MPa (wet) or 8.9 Mpa (dry)

Using 75x75x5 Square S/S plate

ØQ = **23.37** kN (wet) **OK**

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 75x75x5 Square S/S Plate.

(spacing = 400mm max centres)

D. Fixing to Timber Using Coach Screws

As per NZS3603, Timber Group J5, Screws in Withdrawal. (ØQ = Ø n k1 K p Qk)

where: \emptyset =0.7, k1=1 (brief), K=0.7 (wet) or 1 (dry)

Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

Using M10 Coach Screws

 $\phi Q = 52.43 \text{ N/mm (wet)}$ Min Penetration = 244 mm (wet)

Using M12 Coach Screws

 $\phi Q = 57.82 \text{ N/mm (wet)}$ Min Penetration = 221 mm (wet)

Cracked Concrete - ChemSet Anchor Stud Design Calculator

European Technical Approval: ETA-10/0309 **CRACKED Concrete - EPCON™ C8 Ramset** EPCON C8 **Anchor Type:** Anchor Stud - Gr 316 **Anchor Size** $d_b = M 12$ Input Data Plan View - Generic Input Description **Project Details** (Strength Limit State Design) (per anchor Dimensions in (mm) 1. Number of anchors (n) Proiect Name:n = 2. Anchor Spacing (a) a = 400 mm 3. Concrete Edge Distance (e) e = 60 mm Project Site Address: 4. Concrete Cylinder Strength (f'c) 20 MPa f'c = 5. Cracked Conc. (C) or Non-Cracked (N) e= ∞ C or N c 6. Effective Depth (h>6xdh) h = 200 7. Anchor Stud size (d_b) - M8 → M30 Design Identification:d. = 12 mm \oplus 8. Concrete Edge Distance Corner (e1) e₁ = 60 mm 9. Internal to a row (I) or end of row (E) I or E Ε Shear Design Load V* 10. Dry Hole (D) or Wet hole (W) D or W w 11. Min Concrete Sub'te Thickness (b_m) b_m = 250 mm ChemSet™ Anchor Stud "Specification" EPCON™ C8 "Specification" 12. Anchor Stud Grade (5.8, 8.8, 316 SS) Grade = 316 SS 13. Fixture Thickness (t) mm Special Length - Use Typ Thr'd Rod or Diff.Size Part No. C8-450 14. Effective Length (L_e) Direction of Shear 205 mm Hole Diameters (mm) Capacity Reduction Factors 15. Design Tensile Load-per anchor (N*) N* = 0 kN Design Load - α 16. Design Shear Load-per anchor (V*) V* = 0 kN Drill d_b = 14 onc Tension $1/\gamma_{Msp} = \phi_c = 0.56$ α = 0*- towards edge α = 180* - away from edge 17. Direction of Shear design load (α) 0 $1/\gamma_{Mc} = \varphi_c = 0.67$ α= 18. Service Temperature (°C) -40°C to +40°C **Output Description Output Data Elevation View - Generic Anchor Loaded** (Strength Limit State Design) N* Tensile Design Load **DESIGN O.K.** MIN. CRITERIA for a.e & h - O.K. (per anchor) Anchor end of a row Des.Pullout & CONC.Tensile Resistance N_{Rd,p} = 12.9 kN Cracked Conc. STEEL Tensile Resistance N_{Rd,s} = 31.6 Fixture Design CONC. Edge Shear Resistance 8.1 kN $V_{Rd,c} =$ Cracked Conc. STEEL Shear Resistance 19.2 kN Des. Cracked Conc. Pryout Failure V_{Rd,cp} = 24.3 kΝ Drill hole diameter Effective Depth d_h = 14 mm TENSION O.K. Design Tensile Resistance 12.9 kΝ Substrate Thickness **Tension Design Check** N*/N_{Rd} = 0.00 < 1 bm = 250 Anchor internal to a row SHEAR O.K. **Design Shear Resistance** kN Shear Design Check $V^*/V_{Rd} = 0.00$ < 1 a а e. COMBINED TENSION SHEAR O.K. 60 400 400 60 Combined Check - N*/N_{Rd} + V*/V_{Rd} = < 1.2 Anchor Size Metric Drill hole diamete (mm) 10 12 14 18 24 26 N/A N/A Stressed Area (mm²) 33 154 232 337 N/A N/A 53 79 nchor Stud Yield Strength 450 450 450 N/A N/A racked Conc. Steel Tensile Resistance N_{Rd,s} 13.9 21.9 31.6 58.8 92.0 132.1 N/A N/A racked Conc. Steel Shear Resistance (kN) 8.3 35.3 N/A N/A 12.8 19.2 55.1 79.5 dge distance for no conc.cone reduction (mm) 1xh 1xh 1xh 1xh 1xh 1xh N/A N/A nchor spacing for no conc.cone reduction (mm) 2xh 2xh 2xh 2xh 2xh 2xh N/A N/A bsolute Minimum edge dist. & anc'r spac (mm) 40 100 Design tensile resistance N_{Rd} (kN per anchor) Effective Depth - h (mm) 6.0 (mm) 6.5 80 (mm) 7.4 9.3 11.9 90 (mm) 8.4 10.4 100 (mm) 9.3 11.6 13.2 110 (mm) 10.2 12.8 14.5 16.5 120 (mm) 11.1 13.9 15.8 18.8 125 (mm) 11.6 14.5 16.5 20.0 150 (mm) 13.9 17.4 19.8 24.9 26.2 160 18.6 26.6 28.9 13.9 21.1 28.9 13.9 19.7 22.4 28.2 31.6 31.6 13.9 21.9 25.1 31.6 37.4 37.4 210 27.7 34.9 43.4 43.4 (mm) 13.9 21.9 240 13.9 21.9 31.6 39.9 49.8 53.1 (mm) N/A 280 (mm) 13.9 21.9 31.6 46.5 58.2 66.9 N/A 350 (mm) 13.9 21.9 31.6 58.2 72.7 87.2 N/A 450 (mm) 13.9 21.9 31.6 58.8 92.0 112.2 N/A N/A 550 (mm) 13.9 21.9 31.6 58.8 92.0 132.1 N/A N/A The design engineer should ensure the structural element is capable of supporting these loads. Refer to Rams

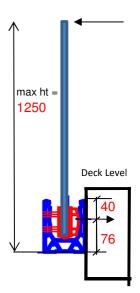
5.3

BASE FIXINGS FOR EXTERNAL BALUSTRADE (at 200mm max centres)

- For Occupancy types B, C3 - For Up to max "Very High" Wind

mm

200 Maximum Tributary Spacing of Fixings = 5


Number of base fixings per panel =

		1.5Q1:	$1.5 \times 0.6 \text{ kN} / \text{(no of base fixings)} =$	0.18	kN
C3 loading		1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.225	kN
		1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
(V.H)	Wind - external	Wuls:	0.6 x 50 x 50 /1000 x 1.3 =	1.95	kPa

Tension Force for Upper Fixing @ 200 mm max spacing (Central Bolts):

1.5Q1: $N^*/anchor = 5.10 kN$ 1.5Q2: $N^*/anchor = 6.38 kN$ 1.5Q3: $N^*/anchor = 4.77 kN$ Wuls: $N^*/anchor = 6.20 kN$

Max N*/anchor = 6.38 kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.151 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.12 kN

> 1.2G: $V^*/anchor = 0.27 kN$

A. Fixing to Concrete

Refer to page 14 for design calculations.

Anchor Spacing= 200 mm Concrete Strength, f'c = 20MPa min Concrete Edge Dist= 60mm min Considered as Cracked concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = **8.10** kN OK CDR= 0.85 < 1.2 OK

4.70 kN OK ØV =

Use M10 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy. Drilled hole depth to be 120 mm min into concrete.

(spacing = 200mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)

ØN = **27.20** kN OK CDR= 0.18 OK

ØV = **17.86** kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset \text{ k1 } x \text{ k3 } x \text{ Fp } x \text{ Aw}$)

where: \emptyset =0.8, k1=1 (brief), k3=1, Fp = 5.3MPa (wet) or 8.9 Mpa (dry)

Using 50x50x5 Washers

 $\emptyset Q = 10.12 \text{ kN (wet)} \quad OK$

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 50x50x5 Square S/S Washers.

(spacing = 200mm max centres)

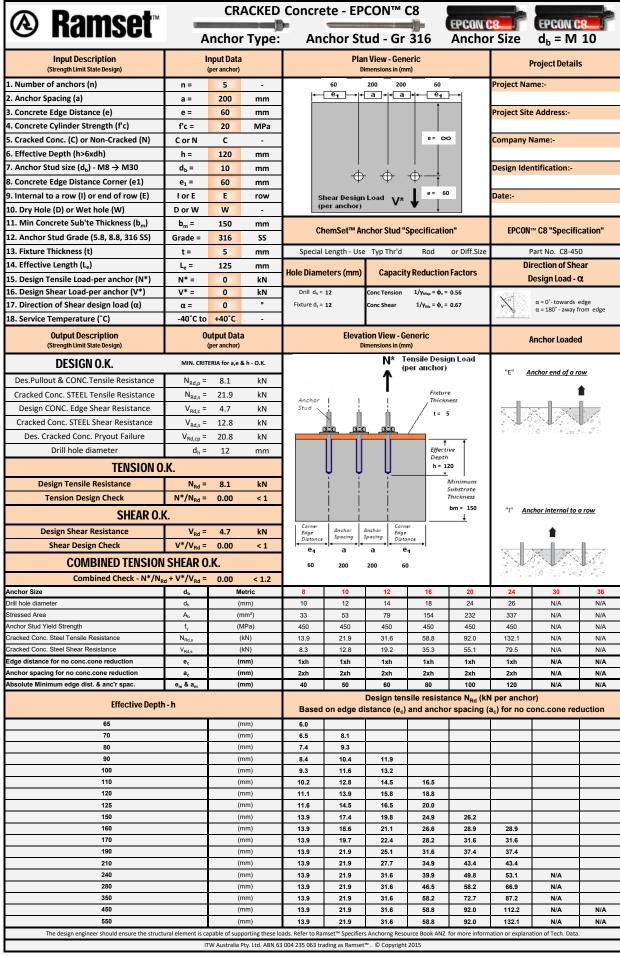
D. Fixing to Timber Using Coach Screws

As per NZS3603, Timber Group J5, Screws in Withdrawal. (ØQ = Ø n k1 K p Qk)

where: \emptyset =0.7, k1=1 (brief), K=0.7 (wet) or 1 (dry)

Qk = 107N/mm (M10 Coach Screws) or 118N/mm (M12 Coach Screws)

Using M10 Coach Screws


 $\phi Q = 52.43 \text{ N/mm (wet)}$ Min Penetration = 122 mm (wet)

Using M12 Coach Screws

 $\emptyset Q = 57.82 \text{ N/mm (wet)}$ Min Penetration = 111 mm (wet)

Cracked Concrete - ChemSet Anchor Stud Design Calculator

European Technical Approval: ETA-10/0309

6. Additional Assessment of Glass Balustrade in Extra High Wind

The side-mounted glass balustrade with 0.95m max glass height from top of base channel under Extra High Wind (case B) has been assessed to see whether the required bending stress at the base is less than the original test setup (case A). The following are the parameters considered in the assessment.

Case A (done by testing)

= Very High Wind, 1.1m max Glass Height from top of base channel

Case B (additional assessment)

= Extra High Wind, 0.95m max Glass Height from top of base channel

Wind Load Calculations:

Case A

Wind Loads (VERY HIGH)

Design for Very I	High Winds in	terms of th	ne Wind Speed categories in
	NZS 3604:2	011 (up to	50 m/s).
V _{sit,β} (Ultimate)	=	50.0	m/s
V _{sit.β} (Serviceability)	_	37.3	m/s
v _{sit,β} (ser viceability)	_	37.3	111/5
q	=	1.50	kPa (ULS)
and	=	0.83	kPa (SLS)
For external barriers	use Cp =	1.30	
For internal barriers u		0.30	
i or internal partiers t	ise op -	0.50	
	_	4.05	
Wind Load = c	1 x Cp =	1.95	kPa (ULS)
	=	1.08	kPa (SLS)

> Case B

Wind Loads (EXTRA HIGH)

)				
	Design for EXTRA H	HIGH Winds	in terms of	the Wind Speed categories in
		NZS 3604:	2011 (up to	o 55 m/s).
	$V_{sit,\beta}(Ultimate)$	=	55.0	m/s
	$V_{sit,\beta}$ (Serviceability)	=	37.3	m/s
	q	=	1.82	kPa (ULS)
	and	=	0.83	kPa (SLS)
	For external barriers u		1.30	
	For internal barriers us	se Cp =	0.30	
		_		15 (11)
	Wind Load = q	x Cp =	2.36	kPa (ULS)
		=	1.08	kPa (SLS)

The required bending moment at the base under Wind load for each case was calculated as follows:

Case A (done by testing)

- = Very High Wind
- = 1.1m max Glass Height from top of base channel

Wind Load (VH) = 1.95kPa

Full Height = 1235mm

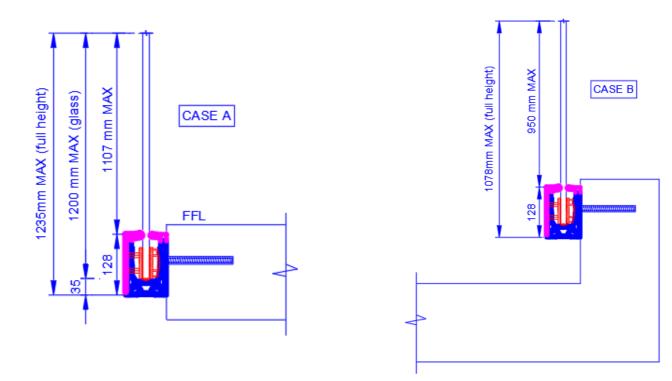
Bending Moment (per metre width):

 $M^* = (1.95kPa)(1.0m)(1.235)(1.235) / 2$

 $M^* = 1.4871 \text{ kNm}$

Case B (additional assessment)

- = Extra High Wind
- = 0.95m max Glass Height from top of base channel


Wind Load (EH) = 2.36kPa

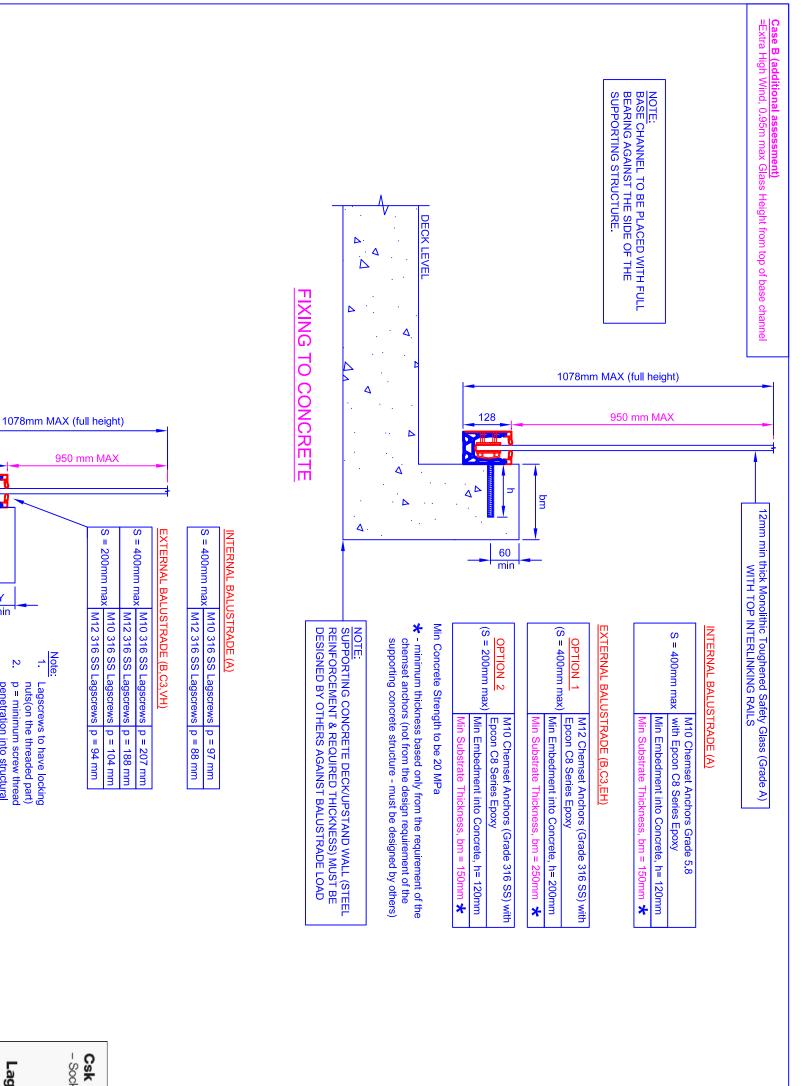
Full Height = 1078mm

Bending Moment (per metre width):

 $M^* = (2.36kPa)(1.0m)(1.078)(1.078) / 2$

 $M^* = 1.371 \text{ kNm} < 1.4871 \text{ kNm (OK)}$




% Difference for bending Moment $M^* = 7.8 \%$

The required bending moment at the base for Case B is less than the Case A by 8%.

Based on this additional assessment, the side-mounted glass balustrade with 0.95m max glass height from top of base channel under Extra High Wind (case B) is less critical than the original test setup (case A).

Therefore, it is concluded that the side-mounted glass balustrade with 0.95m max glass height from top of base channel under Extra High Wind (case B) can be covered from the testing results of the side-mounted glass balustrade with 1.1m max glass height from top of base channel under Very High Wind (case A).

THIS GL LIVE LOAD: ASS BALUSTRADE IS SUITABLE FOR THE FOLLOWING:

OCCUPANCY TYPE	REFER TABLE 3.3 OF AS/NZS 1170
Α	ALL AREAS WITHIN OR SERVING EXCLUSIVELY ONE DWELLING INCLUDING STAIRS, LANDINGS ETC. BUT EXCLUDING EXTERNAL BALCONIES & EDGES OF ROOFS.
B & C3	EXTERNAL DOMESTIC BALCONIES, OFFICES AND WORK AREAS.
	(NOT SUBJECT TO OVER CROWDING)

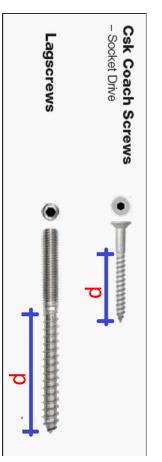
FIXINGS:

UP TO "EXTRA HIGH" (EH) WIND ZONE WITH MAXIMUM BASIC WIND SPEED OF $55~{\rm m/s}$. (DESIGN WIND PRESSURE = $2.36~{\rm kPa}$ @ ULS)

WIND LOAD:

- 1. ALL ANCHORS MUST BE INSTALLE MANUFACTURERS REQUIREMENTS. ICHORS MUST BE INSTALLED IN ACCORDANCE WITH
- CODES. 2. BOLTING ARRANGEMENT MUST COMPLY WITH RELEVANT MATERIAL
- 3. STRENGTH & STIFFNESS OF THE SUBSTRATE STRUCTURE MUST BE SUFFICIENT FOR THE BALUSTRADE LOADS THIS MUST BE SPECIFICALLY CHECKED BY OTHERS FOR EACH SITUATION.

DURABILITY:


1. ALL FIX "DURABI XINGS & STRUCTURAL STEEL MUST COMPLY WITH SECTION 4 LITY" OF NZS 3604:2011.

CONNECTION TO SUPPORTING DECK TIMBER FRAMING:

BOUNDAR PER THE . TO RESIST THE ROTATION AT THE BASE, FIX THE SUPPORTING SOUNDARY / END JOISTS TO THE SUPPORTING DECK TIMBER FRAMING AS PER THE DETAILS FROM NZS3604:2011 FIGURE 7.10.

(OTHERW BY OTHER VISE THOSE STRAPS, BOLTS,ETC - TO BE SPECIFICALLY DESIGNED RS.)

DETAILS 0 COACH SCREWS / LAGSCREWS

= minimum screw thread penetration into structural timber framing

O

P go P CONSULTING ENGINEERS LTD

FIXING

TO TIMBER

(LAGSCREW)

SUPPORTING TIMBER SUBSTRATE TO SUIT
-TIMBER SHOWN IS INDICATIVE ONLY
-MUST BE ABLE TO RESIST BALUSTRADE LOADING/ROTATION
(TO BE CHECKED / DESIGNED BY OTHERS)

DECK LEVE

128

min

nuts(on the threaded part) p = minimum screw thread

penetration into structural

timber framing

Lagscrews to have locking

Minimum Edge Distance (Y)
Y = 50mm (using M10)
Y = 60mm (using M12)

6A Montel Avenue, Henderson ph: 836-1853 Civil and Structural Engineering

FMI / VETRO RACCORDI LTD - TILT-LOCK BASE CHANNEL SYSTEM (SIDE MOUNTED)

INTERNAL & EXTERNAL BALUSTRADE - 12mm thick TOUGHENED GLASS (WITH TOP CAPPING RAIL)

Dra **∑** Р

S

ales

Project 11/243 (DS52)

NOT TO SCALE Date20/10/2023 Sheet ENG 02 (Ca