P & P CONSULTING ENGINEERS LTD

Civil and Structural Engineering

Mr P. Prakash (Director)
B.E. (Civil), CPEng, MIPENZ
Mr J. Dela Cruz
B.E. (Civil), GIPENZ
Mr H. Yin
B.E. (Civil), GIPENZ
Dr. H.D.W. FENDALL (Consultant)

B.E. (Civil) Hons., Ph.D., CPEng, MIPENZ

6A Montel Avenue, Henderson, AUCKLAND, 0612 Ph. & Fax 09-836-1853 parmil@pnpltd.co.nz joel@pnpltd.co.nz hansen@pnpltd.co.nz

Ref: 11/243/ds58 22 October 2021

Vetro Raccordi / FMI Ltd

ASSESSMENT OF FRAMELESS GLASS BALUSTRADE

USING TILT-LOCK BASE CHANNEL SYSTEM (SIDE MOUNTED) & 13.52mm thick SGP TOUGHENED LAMINATED SAFETY GLASS (with Top Capping / Interlinking Rail)

	INDEX	GE
1.	Producer Statement - Design	1
2.	Design General	2
	The glass balustrade had been tested to comply with AS/NZS 1170.1: 2002 Table 3.3 Minimum Imposed Actions for Barriers under Occupancy Type A, B, E and C3.	
	The glass balustrade had also been tested for maximum "Very High" wind load	
3.	<u>Load Tests</u>	3
4.	Tests Arrangement & Results	4
4.1	<u>Balustrade</u>	4
	Based on the testing, the glass balustrade which comprised of 13.52mm thick SGP Toughened Laminated Grade A Safety Glass (6mm Toughened Glass + 1.52mm SGP interlayer + 6mm Toughened Glass) supported by tilt-lock base channel system (side mounted) with top capping / interlinking rail was sufficient for the following:	t
	 Occupancy types A, B, E, C3 Up to maximum "Very High" Wind 	
5.	Base Fixings	6
	Refer to Summary Drawing ENG 01 for reference.	
5.1	Base Fixings for Internal Balustrade ➤ For Occupancy types A, B, E, C3 ➤ For Up to max "Very High" Wind	6
5.2	Base Fixings for External Balustrade ➤ For Occupancy types B, E, C3 ➤ For Up to max "Very High" Wind	9

Notes:

- 1. Any parts of the structure which are not covered by the specific design included with these calculations must comply either with the New Zealand Building Code or specific design as detailed by others. Any exceptions to this should be referred back to this Design Office.
- 2. The above calculations include structural work for which a Building Consent must be obtained prior to building. It is the Owner's responsibility to obtain all necessary consents.
- 3. It is assumed that the strength and stiffness of the substrate is sufficient to adequately resist the balustrade loads this must be confirmed for each installation situation and must be checked by others.
- 4. This design assumes that all the specified members are suitably protected from excess moisture in accordance with Section E1, E2 and E3 of the Building Code. All timber, steelwork, bolts and fasteners to be corrosion protected in accordance with the requirements of NZS 3604:2011 Chapter 4, Durability.
- 5. This design is for glass panels which comply with AS/NZS 2208 and accessories supplied by Vetro Raccordi / FMI Ltd.

Building Code Clause(s).......B1,F2,F4

PRODUCER STATEMENT - PS1 - DESIGN

(Guidance on use of Producer Statements (formerly page 2) is available at www.engineeringnz.org)

ISSUED BY:	P & P CONSULTING	ENGINEERS LTD		
то:	VETRO RACCORDI	/ FMI LIMITED		
	VARIOUS LOCAL AL	(Owner/Developer)		
TO BE SUPPLIED TO:	VARIOUG LOCAL AC	(Building Consent Auth		
IN RESPECT OF: Glass	Balustrade with Tilt-loc	` •	mounted) & 13.52mm SC	GP Toughened Laminated Glass
AT: VARIOUS SITES (Re	efer to design summary	y and structural drawing (Address)	a)	
Town/City:	(Address)	LOT	DP	SO
We have been engaged by	y the owner/developer	referred to above to pro	ovide:	
GLASS TESTING REVIE	W AND DESIGN FOR	BASE FIXING		
		(Extent of Engageme	nt)	
services in respect of the i	roquiromento of Clause	, , ,	,	odo for:
All or ■ Part only (as			, or the proposed buildin	g work.
The design carried out by			D40/0	44
Compliance Document	s issued by the Ministr	y of Business, Innovation	on & Employment (verificat	//1Or ion method/acceptable solution)
Alternative solution as	per the attached sched	lule		
The proposed building wo	rk covered by this prod	ucer statement is desc	ribed on the drawings titl	ed:
VETRO RACCORDI/FMI together with the specifical				43/DS58 , DRAWING ENG01 ement.
On behalf of the Design (i) Site verification of the fo (ii) All proprietary products	ollowing design assum	ptions REFER NOTES ance specification requ	AT THE END OF DESIGNATION AT THE END OF THE	SN SUMMARY
documents provided or list	ed in the attached sch lertaken the design hav	edule, will comply with	the relevant provisions o	wings, specifications, and other of the Building Code and that b), ecommend the following level of
СМ1 СМ2 СМ	3 CM4 CM5 (E	Engineering Categories) Or	as per agreement with	owner/developer (Architectural)
(Name of	Design Professional)			Reg Arch#
I am a member of: Eng	ineering New Zealand	NZIA and hold the	following qualifications:	BE(Civil), CPEng
The Design Firm is a mem	is statement hol <u>ds</u> a cu	rrent policy of Profession	nal Indemnity Insurance	no less than \$200,000*.
SIGNED BY. Parmil Praka	sh		(Signatura)	Orlean
SIGNED BT	(Name of Design	Professional)	(Signature)	
ON BEHALF OF	P & P CONSULTI	NG ENGINEERS LTD		Date 22 October 2021
ON BEHALF OF	(Design F			Date

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, ENGINEERING NEW ZEALAND AND NZIA

2. DESIGN GENERAL

The glass balustrade was tested to comply with the following:

STATUTORY

NZS 4223.3:2016 Glazing In Buildings AS/NZS 1170:2002 Loadings Code NZS 3404:1997 Structural Steel NZS 3101:1995 Concrete NZS 3603:1993 Timber

AS/NZS 1664.1:1997 Aluminium Structures - Part 1 Limit State Design

LOADS (Lateral Loads Only Considered)

Live Loads (Refer to Table 3.3 of AS/NZS 1170:)

Occupancy	Specific Uses	Top E	<u>dge</u>	<u>Infill</u>
Α	Internal Domestic Situation Only	0.35 kN/m	0.6 kN	0.5 kPa
B & C3	External Domestic Balconies, Offices and Work Areas. (NOT subject to Over Crowding)	0.75 kN/m	0.6 kN	1 kPa or 0.5 KN

Wind Loads (VERY HIGH)

Design for Very High Winds in terms of the Wind Speed categories in									
·	NZS 3604:	2011 (up to	50 m/s).						
$V_{sit,\beta}(Ultimate)$	=	50.0	m/s						
V _{sit,β} (Serviceability)	=	37.3	m/s						
510,000									
q	=	1.50	kPa (ULS)						
and	=	0.83	kPa (SLS)						
For external barriers us	e Cp =	1.30							
For internal barriers use	e Cp =	0.30							
Wind Load = q x	Cp =	1.95	kPa (ULS)						
	=	1.08	kPa (SLS)						

LOAD FACTORS and DEFLECTIONS

Importance Level = 2 ULS factor = 1.5Q (Refer Section 4.2.2 of AS/NZS 1170) Maximum Deflection = Height / 30

3. LOAD TESTS

<u>Location of Tests</u>: 3 Timaru Place, Mt Wellington

<u>Date of Tests</u>: October 2021

<u>Test Description</u>: Load testing of Glass Balustrade

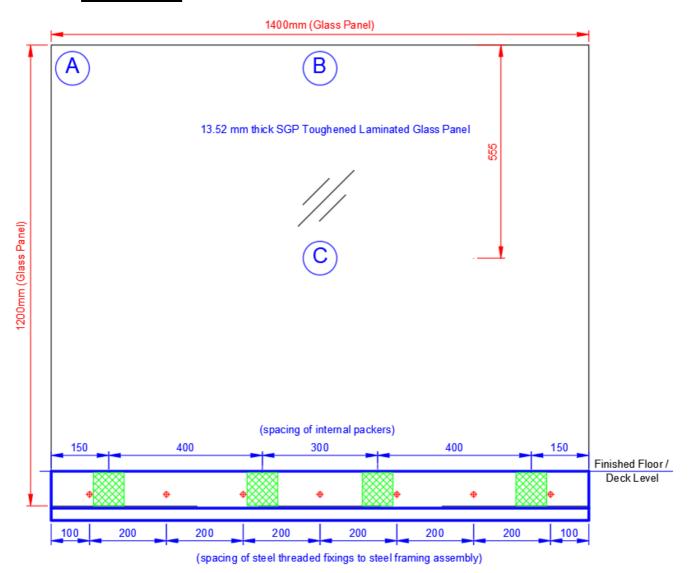
(Panel Tested = 1400mm wide x 1200mm high glass panel)

System Description: The glass balustrade which was supplied by Vetro Raccordi / FMI Ltd


comprised of 13.52mm thick SGP Toughened Laminated (Grade A)
Safety Glass (6mm Toughened Glass + 1.52mm SGP Interlayer + 6mm
Toughened Glass) supported by tilt-lock base channel system (side

mounted) with top capping / interlinking rail.

Setup / Procedure:


The balustrade was setup with different load tests as noted on page 4. The glass panel was supported at the base with tilt-lock base channel system (side mounted). This channel system was bolted to the steel frame assembly with steel threaded fixings as shown below. Top capping / interlinking rail was also installed on top of the glass panel which was fixed to the side posts acting as the supporting neighboring glass panels.

Hydraulic Body Frame/Ram and load cell or weighing indicator were used to attain the required test loads.

4. TESTS ARRANGEMENT & RESULTS

4.1 BALUSTRADE

TESTS	LOAD LOCATION
Α	Point Load @ Top Corner with steel round disc
В	Horizontal UDL Load @ Top with Solid Steel Beam
С	Infill & Wind Load @ Middle Centre with Framing

NOTE:

- 1. Assuming a coefficient of variation (Vr) of 10% for the glass, the variability factor kt is taken as 1.33 for 3 test samples.
- 2. The structure to which the balustrade system is attached was not tested or analysed. The strength and stiffness of the substrate structure must be specifically confirmed for each situation.

TEST RESULTS (Fracture Check - ULS)

Tests	Target Load (Kg)	Duration (mins)	Observation for Samples 1,2,3
Α	122	16	No Fracture
В	213	16	No Fracture
С	407	16	No Fracture

TEST RESULTS (Deflection Check - SLS)

Tooto	Target Load	Deflec	Remarks		
Tests	@ SLS (Kg)	Sample 1	Sample 2	Sample 3	neillaiks
Α	61.2	13.04	13.95	13.77	Passed
В	107	15.40	16.34	16.28	Passed
С	170	12.05	12.13	11.85	Passed

Allowable Deflection = H/30 = 36.7 mm = 30 mm

Based on the testing, the glass balustrade which comprised of 13.52mm thick SGP Toughened Laminated Grade A Safety Glass (6mm Toughened Glass + 1.52mm SGP interlayer + 6mm Toughened Glass) supported by tilt-lock base channel system (side mounted) with top capping / interlinking rail was sufficient for the following:

- > Occupancy types A, B, E, C3
- > Up to maximum "Very High" Wind

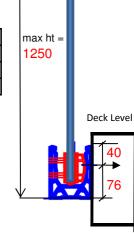
Base Fixings 5.0 6

Refer to Summary Drawing ENG 01 for reference.

BASE FIXINGS FOR INTERNAL BALUSTRADE

- For Occupancy types A, B, E, C3
- For Up to max "Very High" Wind

Maximum Tributary Spacing of Fixings = 200 mm 5


Number of base fixings per panel =

	1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.18 kN
A,B,E,C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.225 kN
	1.5Q3:	1.5 x 1.0kPa =	1.5 kPa
Very High Wind	Wuls:	$0.6 \times 50 \times 50 / 1000 \times 1.3 =$	1.95 kPa

Tension Force for Upper Fixing @ 200 mm max spacing (Central Bolts):

1.5Q1: $N^*/anchor = 5.10 kN$ 1.5Q2: $N^*/anchor = 6.38 kN$ 1.5Q3: $N^*/anchor = 4.77 kN$ Wuls: $N^*/anchor = 6.20 kN$

Max N*/anchor = 6.38 kN

Shear Force per Fixing (1.2G)

5.1

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.151 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.12 kN

> 1.2G: $V^*/anchor = 0.27 kN$

A. Fixing to Concrete

Refer to page 7 for design calculations.

Anchor Spacing= 200 mm Concrete Strength, f'c = 20MPa min Concrete Edge Dist= 60mm min Considered as Cracked concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

ØN = 11.50 kN OK CDR= 0.61 < 1.2 OK

4.70 kN OK ØV =

Use M10 Chemset Anchors (Grade 5.8 Steel) with Epcon C8 Series Epoxy. Drilled hole depth to be 120 mm min into concrete.

(spacing = 200mm max centres)

B. Fixing to Steel

Using M10 Grade 4.6/S

ØN = **18.56** kN OK CDR= 0.37 **OK**

ØV = 9.62 kN OK

Use M10 Grade 4.6/S Steel Bolts with metric round washer per fixing.

Cracked Concrete - ChemSet Anchor Stud Design Calculator European Technical Approval: ETA-10/0309

	0309			_								
№ Ramset [™]	-	CR	ACKED	Concret	e - EP		C8	EPCON (0	EPCON C	Q	
o namset	Α	ncho	r Type:	_								
Input Description (Strength Limit State Design)	Input Data (per anchor)					Plan View - Generic Dimensions in (mm)			Project Details			
1. Number of anchors (n)	n = 5 -				60 200 200 60					Project Name:-		
2. Anchor Spacing (a)	a =	200	mm		e₁ → +[a + a	+ e ₁					
3. Concrete Edge Distance (e)	e =	60	mm						Project Site	Address:-		
4. Concrete Cylinder Strength (f'c) 5. Cracked Conc. (C) or Non-Cracked (N)	f'c = C or N	20 C	MPa -				e= 0	,	Company N	lame:-		
6. Effective Depth (h>6xdh)	h =	120	mm	•					Company is	vanie		
7. Anchor Stud size (d _b) - M8 → M30	d _b =	10	mm				!		Design Identification:-			
8. Concrete Edge Distance Corner (e1)	e ₁ =	60	mm		0	⊕	♥ 					
9. Internal to a row (I) or end of row (E)	l or E	E	row		ear Design	Load V*	e = 60		Date:-			
10. Dry Hole (D) or Wet hole (W)	D or W	D	-	(рег	r anchor)		<u> </u>					
11. Min Concrete Sub'te Thickness (b _m)	b _m =	150	mm	Che	mSet™ An	chor Stud "	Specificatio	n"	EPCON'	× C8 "Specifi	cation"	
12. Anchor Stud Grade (5.8, 8.8, 316 SS)	Grade =	5.8	Gr	0 111			- 10.00	P100 01				
13. Fixture Thickness (t)	t =	5	mm	Special Le	ength - Use	Typ Thr'd	Rod Gr 8.8	or Diff.Size		art No. C8-45		
14. Effective Length (L _e) 15. Design Tensile Load-per anchor (N*)	L _e =	125 0	mm kN	Hole Diamet	ers (mm)	Capacit	y Reduction	Factors		rection of Sho esign Load -		
16. Design Shear Load-per anchor (V*)	V* =	0	kN	Drill d _h = 12	2	Conc Tension	1/γ _{Msp} = φ _c =	0.56	owyaire.	- Jugar Round		
17. Direction of Shear design load (α)	α=	0	•	Fixture d _f = 12		Conc Shear	$1/\gamma_{Mc} = \varphi_c =$		ν ^α	$\alpha = 0^{\circ}$ - towards $\alpha = 180^{\circ}$ - away t		
18. Service Temperature (°C)	-40°C to	+40°C	-						50111 N 1000	50 away l	cose	
Output Description (Strength Limit State Design)		u tput Dat (per anchor)				i on View - G mensions in (m			A	Inchor Loade	d	
DESIGN O.K.	MIN. CRIT	ERIA for a,e	& h - O.K.				ensile Desig er anchor)	jn Load	"E" Aı	nchor end of a r	ow	
Des.Pullout & CONC.Tensile Resistance	$N_{Rd,p} =$	11.5	kN	55		T			_		_	
Cracked Conc. STEEL Tensile Resistance	N _{Rd,s} =		kN	Anchor	1	i	Fixture Thickn					
Design CONC. Edge Shear Resistance	V _{Rd,c} =		kN	Stud	ı h	'n	/ t= 5		*	×()×(-	10/K	
Cracked Conc. STEEL Shear Resistance	V _{Rd,s} =		kN	.083	ao, <u>os</u> ao	_ DESAG_	_					
Des. Cracked Conc. Pryout Failure Drill hole diameter	$V_{Rd,cp} = d_h = d_h$	20.8	kN mm				† Effecti	100				
TENSION O		12					Depth					
	1			h = 120			ı					
Design Tensile Resistance	N _{Rd} =	11.5	kN		Minimum Substrate Thickness							
Tension Design Check SHEAR O.	N*/N _{Rd} =	0.00	<1					bm = 150	"I" <u>And</u>	thor internal to	a row	
Design Shear Resistance	V _{Rd} =	4.7	kN	Corner Edge		Inchor Edge				•		
Shear Design Check	V*/V _{Rd} =	0.00	<1	Distance e4	Spacing 5	a Pista						
COMBINED TENSION	SHEAR O	.K.		60	200	200 60					10 0	
Combined Check - N*/N			< 1.2	1	200	200 00	,			0.0		
Anchor Size	d _b		letric	8	10	12	16	20	24	30	36	
Drill hole diameter	d _h		mm)	10	12	14	18	24			N/A	
Stressed Area	A _b	(1							26	N/A		
		(1	mm²) MPa)	33 430	53 430	79 430	154	232	337	N/A	N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance	f _y N _{Rd,s}		MPa) (kN)	33 430 12.0	53 430 19.3	79 430 28.0						
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance	f _y N _{Rd,s} V _{Rd,s}		MPa) (kN) (kN)	430 12.0 7.2	430 19.3 12.0	430 28.0 16.8	154 420 52.7 31.2	232 420 82.0 48.8	337 420 118.0 70.4	N/A N/A N/A N/A	N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction	f _y N _{Rd,s} V _{Rd,s} e _c	(MPa) (kN) (kN)	430 12.0 7.2 1xh	430 19.3 12.0 1xh	430 28.0 16.8 1xh	154 420 52.7 31.2 1xh	232 420 82.0 48.8 1xh	337 420 118.0 70.4 1xh	N/A N/A N/A N/A	N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance	f _y N _{Rd,s} V _{Rd,s}	((MPa) (kN) (kN)	430 12.0 7.2	430 19.3 12.0	430 28.0 16.8	154 420 52.7 31.2	232 420 82.0 48.8	337 420 118.0 70.4	N/A N/A N/A N/A	N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	((MPa) (kN) (kN) mm)	430 12.0 7.2 1xh 2xh 40	430 19.3 12.0 1xh 2xh 50	430 28.0 16.8 1xh 2xh 60	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	((MPa) (kN) (kN) mm) mm)	430 12.0 7.2 1xh 2xh 40 Based o	430 19.3 12.0 1xh 2xh 50	430 28.0 16.8 1xh 2xh 60	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac.	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	((MPa) (kN) (kN) mm)	430 12.0 7.2 1xh 2xh 40	430 19.3 12.0 1xh 2xh 50	430 28.0 16.8 1xh 2xh 60	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	((MPa) (kN) (kN) mm) mm)	430 12.0 7.2 1xh 2xh 40 Based oil	430 19.3 12.0 1xh 2xh 50	430 28.0 16.8 1xh 2xh 60	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	((MPa) (kN) (kN) mm) mm) mm) mm) mm) mm)	430 12.0 7.2 1xh 2xh 40 Based of 8.6 9.3 10.6 11.9	430 19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c)	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m	(()	MPa) (kN) (kN) mm) mm) mm) mm) mm) mm)	430 12.0 7.2 1xh 2xh 40 Based of 8.6 9.3 10.6 11.9	19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9 16.6	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c)	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) (kN) (kN) mm) mm) mm) mm) mm) mm)	430 12.0 7.2 1xh 2xh 40 Based of 8.6 9.3 10.6 11.9	430 19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c)	154 420 52.7 31.2 1xh 2xh 80 sile resista	232 420 82.0 48.8 1xh 2xh 100	337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa(kN) Mmm) Mmm) Mmm) Mmm) Mmm) Mmm) Mmm) Mm	430 12.0 7.2 1xh 2xh 40 Based o 8.6 9.3 10.6 11.9 12.0 12.0 12.0	19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9 16.6 18.2 19.3	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c) 17.0 18.8 20.7 22.6 23.6	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho	232 420 82.0 48.8 1xh 2xh 100 nce N _{Rd} (kN r spacing (337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Shear Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 150	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) (kN) (kN) (kN) mm) mm) mm) mm) mm) mm) mm) mm) mm) m	430 12.0 7.2 1xh 2xh 40 Based of 8.6 9.3 10.6 11.9 12.0 12.0 12.0 12.0	19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9 16.6 18.2 19.3 19.3	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c) 17.0 18.8 20.7 22.6 23.6 28.0	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho 23.5 28.8 28.5 35.6	232 420 82.0 48.8 1xh 100 mce N _{Rd} (kN r spacing (i	337 420 118.0 70.4 1xh 2xh 120 I per ancho a _o) for no co	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa(kN) Mmm) Mmm) Mmm) Mmm) Mmm) Mmm) Mmm) Mm	430 12.0 7.2 1xh 2xh 40 Based o 8.6 9.3 10.6 11.9 12.0 12.0 12.0	19.3 12.0 1xh 2xh 50 n edge di 11.6 13.3 14.9 16.6 18.2 19.3	430 28.0 16.8 1xh 2xh 60 Design tens stance (e _c) 17.0 18.8 20.7 22.6 23.6	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho	232 420 82.0 48.8 1xh 2xh 100 nce N _{Rd} (kN r spacing (337 420 118.0 70.4 1xh 2xh 120	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 150 160 170 190	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa) MRA MPA MPA MPA MPA MPA MPA MPA MPA MPA MP	430 12.0 7.2 1xh 2xh 40 Based of the state	430 19.3 12.0 1xh 2xh 50 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3	430 28.0 16.8 1xh 2xh 60 Design tenstance (e _c) 17.0 18.8 20.7 22.6 23.6 28.0 28.0	154 420 52.7 31.2 11.2 2xh 80 80 sile resista and ancho 23.5 28.8 28.5 35.6 38.0 40.4	232 420 82.0 48.8 100 nce N _{Rd} (kN r spacing (-	337 420 118.0 70.4 1xh 120 I per ancho a _c) for no co	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 150 160 170 190 210	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa) MRM MPM MPM MPM MPM MPM MPM MPM MPM MPM	430 12.0 7.2 1xh 40 Based of the state of t	19.3 12.0 1xh 2xh 50 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3 19.3	430 28.0 16.8 1xh 2xh 60 Design tenstance (e _c) 17.0 18.8 20.7 22.6 23.6 28.0 28.0 28.0 28.0	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho 23.5 26.8 28.5 35.6 38.0 40.4 45.1 49.8	232 420 82.0 48.8 1xh 100 nce N _{Rd} (kN r spacing (s	337 420 118.0 70.4 1xh 2xh 120 I per ancho co	N/A N/A N/A N/A N/A N/A N/A N/A O N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 150 160 170 190	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa) MRA MPA MPA MPA MPA MPA MPA MPA MPA MPA MP	430 12.0 7.2 1xh 2xh 40 Based of the state	430 19.3 12.0 1xh 2xh 50 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3	430 28.0 16.8 1xh 2xh 60 Design tenstance (e _c) 17.0 18.8 20.7 22.6 23.6 28.0 28.0	154 420 52.7 31.2 11.2 2xh 80 80 sile resista and ancho 23.5 28.8 28.5 35.6 38.0 40.4	232 420 82.0 48.8 100 nce N _{Rd} (kN r spacing (-	337 420 118.0 70.4 1xh 120 I per ancho a _c) for no co	N/A	N/A N/A N/A N/A N/A N/A N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 155 160 170 190 210 240 280 350	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) (k(N) (k(N) mmn) mmn) mmn) mmn) mmn) mmn) mmn) mm	430 12.0 7.2 11xh 2xh 40 Based of the state	19.3 12.0 1xh 50 n edge di 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	16.8 1xh 2kh 60 Design tenstance (e _c) 17.0 18.8 20.7 22.6 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	154 420 52.7 31.2 1xh 80 2xh 80 sile resista and ancho 23.5 26.8 36.6 38.0 40.4 45.1 49.8 52.7 52.7	232 420 82.0 48.8 1xh 100 mce N _{Rd} (kN r spacing (i 37.5 41.3 45.2 53.4 62.1 71.2 82.0 82.0	41.3 45.2 53.4 62.1 75.6 118.0 70.4 1xh 120 120 120 120 141.3 45.2 53.4 62.1 75.8	N/A	N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 155 150 160 170 190 210 240 280 350 450	f _y N _{Rd,s} V _{Rd,s} e _c a _c e _m & a _m		MPa) MPa) MPa) MRA	430 12.0 7.2 1xh 2xh 40 Based of the state	430 19.3 12.0 1xh 2xh 50 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	16.8 1xh 2xh 60 Design tenstance (ec) 17.0 18.8 20.7 22.6 23.6 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	154 420 52.7 31.2 1xh 80 2xh 80 sile resista and ancho 23.5 26.8 28.5 35.6 36.0 40.4 45.1 49.8 52.7 52.7 52.7	232 420 82.0 48.8 1xh 100 nce N _{RG} (kN r spacing (i 37.5 41.3 45.2 53.4 62.1 71.2 82.0 82.0	41.3 45.2 53.4 62.1 75.6 118.0	N/A	N/A	
Anchor Stud Yield Strength Cracked Conc. Steel Tensile Resistance Cracked Conc. Steel Tensile Resistance Edge distance for no conc.cone reduction Anchor spacing for no conc.cone reduction Absolute Minimum edge dist. & anc'r spac. Effective Dept 65 70 80 90 100 110 120 125 155 160 170 190 210 240 280 350	f _y NRd.s VRd.s ec ac e _m & a _m		MPa) MPa) MPa) MRa) MRa) MRa) MRa) MRa) MRa) MRa) MR	430 12.0 7.2 1xh 2xh 40 Based of the state	19.3 12.0 1xh 2xh 50 11.6 13.3 14.9 16.6 18.2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	430 28.0 16.8 1xh 2xh 60 Design tenstance (e _c) 17.0 18.8 20.7 22.6 23.6 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	154 420 52.7 31.2 1xh 2xh 80 sile resista and ancho 23.5 26.8 28.5 36.6 38.0 40.4 49.8 52.7 52.7 52.7 52.7	232 420 82.0 48.8 1xh 100 nce N _{Rd} (kh r spacing (i 37.5 41.3 45.2 45.2 45.2 62.1 71.2 82.0 82.0 82.0	337 420 118.0 70.4 1xh 2xh 120 I per ancho co a _o) for no co 41.3 45.2 53.4 62.1 75.8 95.6 118.0 118.0	N/A	N/A	

C. Fixing to Timber Using Bolt

Capacity is controlled by bearing on washers. ($\varnothing Q = \varnothing k1 \times k3 \times Fp \times Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry) , \emptyset =0.7, k1=0.8, k3=1

Using 50x50x5 Square Washers

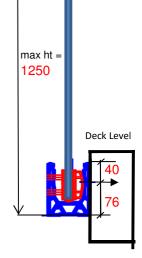
 $\emptyset Q = 11.90 \text{ kN (dry)} \text{ OK}$

Use M10 Grade 4.6/S Steel Bolts with 50x50x5 Square Washers.

BASE FIXINGS FOR EXTERNAL BALUSTRADE

- For Occupancy types B, E, C3 - For Up to max "Very High" Wind

200 Maximum Tributary Spacing of Fixings = mm 5


Number of base fixings per panel =

	1.5Q1:	1.5 x 0.6 kN / (no of base fixings) =	0.18	kN
B,E,C3 loading	1.5Q2:	$1.5 \times 0.75 \text{kN/m} \times \text{trib spacing} =$	0.225	kN
	1.5Q3:	1.5 x 1.0kPa =	1.5	kPa
Very High Wind	Wuls:	$0.6 \times 50 \times 50 / 1000 \times 1.3 =$	1.95	kPa

Tension Force for Upper Fixing @ 200 mm max spacing (Central Bolts):

1.5Q1: $N^*/anchor = 5.10 kN$ 1.5Q2: $N^*/anchor = 6.38 kN$ 1.5Q3: $N^*/anchor = 4.77 kN$ Wuls: $N^*/anchor = 6.20 kN$

Max N^* /anchor = **6.38** kN

Shear Force per Fixing (1.2G)

1.2 x Weight of Glass Panel = 1.2 x (28 kN/m3 x thickness x Area) = 0.151 kN 1.2 x Weight of Al Channel= 1.2 x (0.5 kN/m x spacing) = 0.12 kN

> 1.2G: $V^*/anchor = 0.27 kN$

A. Fixing to Concrete

Refer to page 10 for design calculations.

Concrete Strength, f'c = 20MPa min Anchor Spacing= 200 mm Concrete Edge Dist= 60mm min Considered as Cracked concrete

Using M10 Chemset Anchors with Epcon C8 Series Epoxy.

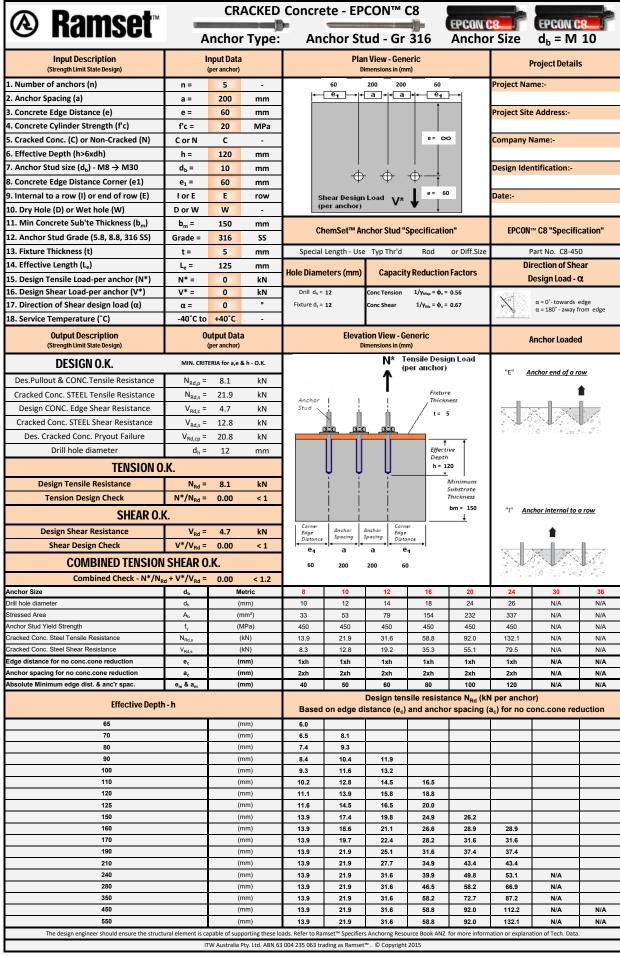
ØN = **8.10** kN OK CDR= 0.85 < 1.2 OK **4.70** kN OK ØV =

Use M10 Chemset Anchors (Grade 316 Stainless Steel) with Epcon C8 Series Epoxy. Drilled hole depth to be 120 mm min into concrete.

(spacing = 200mm max centres)

B. Fixing to Steel

Using M10 Grade A4/316 SS (A4-70)


CDR= 0.18 **OK** ØN = **27.20** kN OK

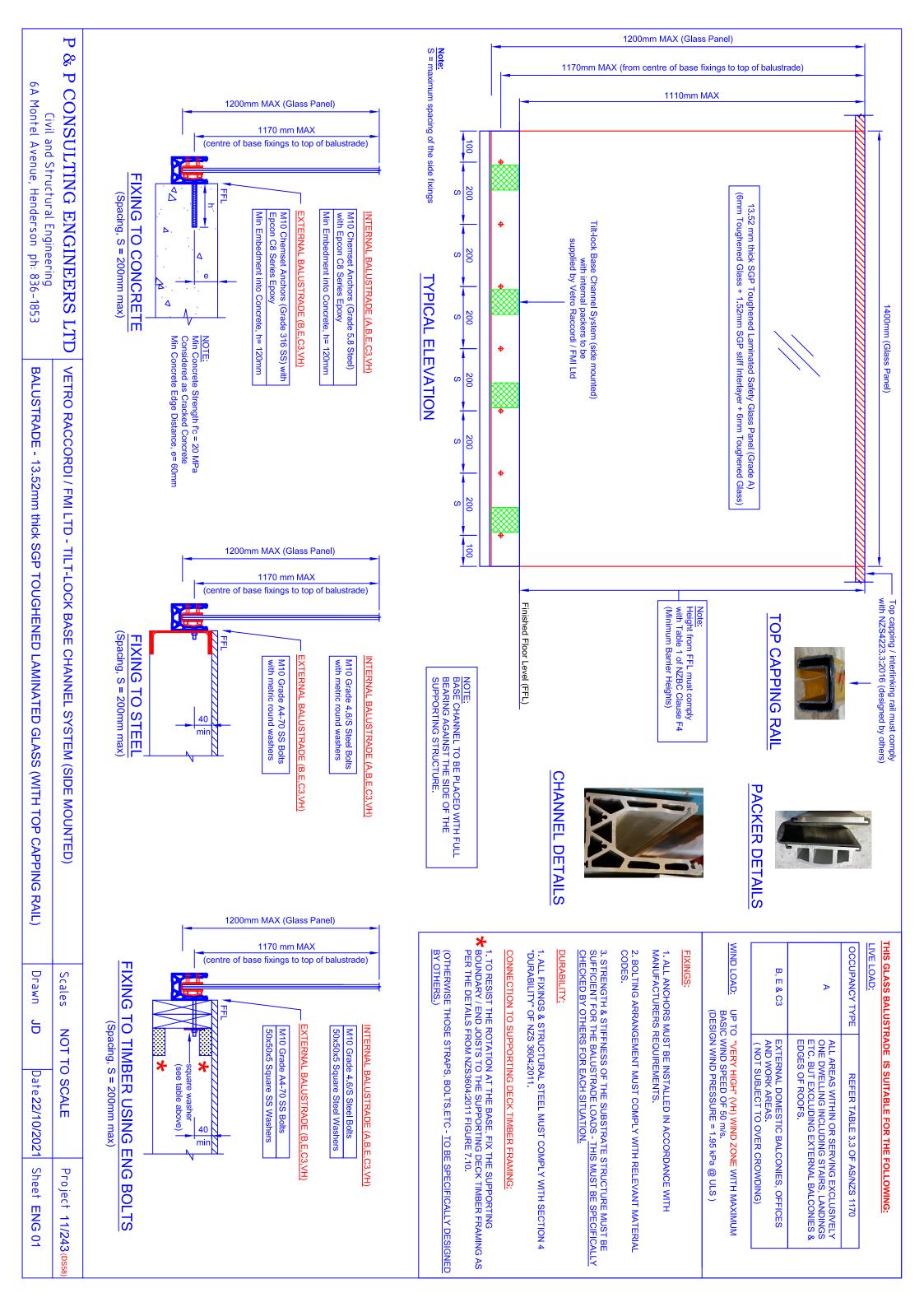
ØV = **17.86** kN OK

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with metric round washer per fixing.

Cracked Concrete - ChemSet Anchor Stud Design Calculator

European Technical Approval: ETA-10/0309

C. Fixing to Timber Using Bolt


Capacity is controlled by bearing on washers. ($\emptyset Q = \emptyset k1 \times k3 \times Fp \times Aw$)

where: Fp = 5.3MPa (wet) or 8.9 Mpa (dry), $\emptyset = 0.7$, k1 = 0.8, k3 = 1

Using 50x50x5 Washers

ØQ = **7.08** kN (wet) **OK**

Use M10 Grade 316 Stainless Steel (A4-70) Bolts with 50x50x5 Square S/S Washers.

